
OMAC API SET
Version 0.18

Working Document

OMAC API Work Group

February 26, 1998



THE OMAC API  SET WORKING DOCUMENT

 VERSION 0.18

2/26/1998I

TABLE OF CONTENTS

TABLE OF CONTENTS ....................................................................................................................... I

TABLE OF FIGURES..........................................................................................................................III

EXECUTIVE SUMMARY...................................................................................................................IV

1. BACKGROUND................................................................................................................................. 1

1.1 ADVANTAGES OF OPEN ARCHITECTURE TECHNOLOGY....................................................................... 1
1.2 IMPEDIMENTS TO OPEN ARCHITECTURE TECHNOLOGY....................................................................... 2

2 REFERENCE MODEL....................................................................................................................... 2

2.1 FOUNDATION CLASSES..................................................................................................................... 3
2.2 MODULES........................................................................................................................................ 4
2.3 ARCHITECTURAL DESIGN.................................................................................................................. 6

2.3.1 Operator Control of a Set of IO Points Example....................................................................... 6
2.3.2 One Axis Bootstrap ................................................................................................................... 7
2.3.3 Programmable Logic Example.................................................................................................. 7
2.3.4 Drilling Motion Control Example............................................................................................. 8

2.4 DETAIL DESIGN FRAMEWORK ......................................................................................................... 10

3 SPECIFICATION METHODOLOGY ............................................................................................. 12

3.1 API SPECIFICATION........................................................................................................................ 12
3.2 OBJECT ORIENTED TECHNOLOGY.................................................................................................... 13

3.2.1 Inheritance............................................................................................................................. 13
3.2.2 Specialization ......................................................................................................................... 14

3.3 CLIENT SERVER BEHAVIOR MODEL................................................................................................. 16
3.3.1 Directive Requests Discussion ................................................................................................ 17

3.4 PROXY AGENT TECHNOLOGY......................................................................................................... 18
3.5 INFRASTRUCTURE........................................................................................................................... 19
3.6 BEHAVIOR MODEL ......................................................................................................................... 20

3.6.1 Levels of Finite State Machines .............................................................................................. 20
3.6.2 Computational Model............................................................................................................. 22
3.6.3 Control Plan Unit NESTING................................................................................................... 26

3.7 DATA REPRESENTATION................................................................................................................. 29

4 MODULE OVERVIEW .................................................................................................................... 31

4.1 TASK COORDINATOR...................................................................................................................... 31
4.2 DISCRETE LOGIC............................................................................................................................ 33
4.3 AXIS.............................................................................................................................................. 34
4.4 AXIS GROUP................................................................................................................................... 36
4.5 PROCESS MODEL............................................................................................................................ 38
4.6 KINEMATICS .................................................................................................................................. 39
4.7 IO SYSTEM.................................................................................................................................... 41

4.7.1 IO Notification........................................................................................................................ 42
4.7.2 IO Configuration .................................................................................................................... 42
4.7.3 IO Customization .................................................................................................................... 42
4.7.4 IO Meta Data.......................................................................................................................... 43



THE OMAC API  SET WORKING DOCUMENT

 VERSION 0.18

2/26/1998II

4.7.5 IO Issues................................................................................................................................. 43
4.8 CONTROL PLAN GENERATOR.......................................................................................................... 43
4.9 HUMAN MACHINE INTERFACE......................................................................................................... 45
4.10 MACHINE TO MACHINE INTERFACE............................................................................................... 48

5 DISCUSSION..................................................................................................................................... 49

5.1 SCHEDULING AND UPDATING.......................................................................................................... 49
5.2 EVENT HANDLING .......................................................................................................................... 52
5.3 CONFIGURATION............................................................................................................................ 52
5.4 ERROR HANDLING, ERROR PROPAGATION....................................................................................... 56

REFERENCES ..................................................................................................................................... 57

APPENDIX A - API .............................................................................................................................. 59

A.1 DISCLAIMER.................................................................................................................................. 59
A.2 NAMING CONVENTIONS................................................................................................................. 59
A.3 NAME TRANSLATION SPECIFICATION.............................................................................................. 59
A.4 BASIC TYPES................................................................................................................................. 59
A.5 OMAC BASE CLASSES TYPES........................................................................................................ 60
A.6 SCHEDULING UPDATER.................................................................................................................. 61
A.7 CONTROL PLAN ............................................................................................................................. 61
A.8 CAPABILITY .................................................................................................................................. 62
A.9 IO................................................................................................................................................. 62
A.10 TASK COORDINATOR................................................................................................................... 64
A.11 DISCRETE LOGIC ......................................................................................................................... 64
A.12 CONTROL PLAN GENERATOR....................................................................................................... 65
A.13 AXIS GROUP................................................................................................................................ 65
A.14 AXIS ........................................................................................................................................... 69
A.15 CONTROL LAW ............................................................................................................................ 74
A.16 HUMAN MACHINE INTERFACE...................................................................................................... 75
A.17 PROCESS MODEL ......................................................................................................................... 75
A.18 KINEMATICS................................................................................................................................ 76



THE OMAC API  SET WORKING DOCUMENT

 VERSION 0.18

2/26/1998II I

TABLE OF FIGURES

FIGURE 1: CONTROLLER CLASS HIERARCHY .............................................................................................. 3
FIGURE 2: OMAC MODULES.................................................................................................................... 5
FIGURE 3: OPERATOR CONTROL OF A SET OF IO POINTS............................................................................. 7
FIGURE 4: SIMPLE, SINGLE AXIS, JOG/HOME ONLY SYSTEM....................................................................... 7
FIGURE 5: LOADER/UNLOADER DISCRETE LOGIC CONTROL........................................................................ 8
FIGURE 6: DRILLING EXAMPLE .................................................................................................................. 9
FIGURE 7: DESIGN FRAMEWORK.............................................................................................................. 10
FIGURE 8: SPECIFICATION LANGUAGE MAPPING....................................................................................... 13
FIGURE 9: GENERAL CONTROL LAW ........................................................................................................ 14
FIGURE 10: PID CONTROL LAW .............................................................................................................. 16
FIGURE 11: MULTIPLE THREADS OF CONTROL ......................................................................................... 17
FIGURE 12: GENERALIZED STATE DIAGRAM ............................................................................................. 20
FIGURE 13: LEVELS OF FSM.................................................................................................................... 21
FIGURE 14: MODULE COMPUTATIONAL PARADIGM................................................................................... 22
FIGURE 15: EXAMPLE LOOSE COUPLING PROBE ARCHITECTURE............................................................... 23
FIGURE 16: EXAMPLE TIGHT COUPLING PROBE ARCHITECTURE................................................................ 24
FIGURE 17: EXAMPLES OF DIFFERENT TYPES OF CONTROL PLAN UNITS .................................................... 25
FIGURE 18: CONTROL PLAN BUILT FROM SERIES OF CONTROL PLAN UNITS ............................................... 25
FIGURE 19: EXAMPLE CONTROL PLAN STATE TRANSITIONS ..................................................................... 26
FIGURE 20: INTELLIGENT CPU SPAWNING LOWER LEVEL CPU................................................................. 27
FIGURE 21: EMBEDDED CPU FORWARDING OBJECT INTERACTION DIAGRAM ............................................ 28
FIGURE 22: TASK COORDINATOR COMPUTATIONAL MODEL...................................................................... 31
FIGURE 23: TASK COORDINATOR AND CAPABILITY OBJECT INTERACTION DIAGRAM ................................. 32
FIGURE 24: DISCRETE LOGIC COMPUTATIONAL MODEL............................................................................ 33
FIGURE 25A: AXIS CLASS DIAGRAM......................................................................................................... 34
FIGURE 25B: AXIS MODULE STATE DIAGRAM .......................................................................................... 35
FIGURE 26: AXIS GROUP MODULE........................................................................................................... 36
FIGURE 27: AXIS GROUP CLASS DIAGRAM ............................................................................................... 37
FIGURE 28: KINEMATICS MODEL............................................................................................................. 39
FIGURE 29: KINEMATICS EXAMPLE.......................................................................................................... 40
FIGURE 30: CONTROL PLAN GENERATOR................................................................................................. 44
FIGURE 31: MVC DESIGN PATTERN........................................................................................................ 45
FIGURE 32: HMI “M” M IRRORS CONTROLLER......................................................................................... 46
FIGURE 34: SCHEDULE UPDATING AXIS OBJECT INTERACTION DIAGRAM .................................................. 51
FIGURE 35: TYPE AND OBJECT REFERENCE LISTS FROM RECURSIVE.......................................................... 54



THE OMAC API  SET WORKING DOCUMENT

 VERSION 0.18

2/26/1998IV

EXECUTIVE SUMMARY

Open modular architecture controller technology offers great potential for integration of process improvements and
better satisfaction of application requirements. With an open architecture, controllers can be built from best value
components from best in class services. The need for open-architecture controllers is high, but vendors are slow to
respond. One reason for the delay in industry action is that no clear open-architecture solution has evolved. In an
effort to promote open architecture control solutions, a workgroup within the Open Modular Architecture Controller
(OMAC) users group is working on defining an OMAC Application Programming Interface (API). The goal of the
OMAC API workgroup is to specify standard APIs for a set of open architecture controller components. This
document contains background information, design methodology and actual API definitions.

As background, the following material will be presented:

• OMAC API definition of open architecture

• advantages and impediments to open architectures

• overview of the OMAC API reference model.

At a high level of conceptual design, the OMAC API reference model will be presented and includes the following
items:

• OMAC API core modules

• application framework

• application design and examples.

The OMAC API reference model does not specify a reference architecture. Instead, modules can be freely
connected. In lieu of a reference architecture, the document includes several reference examples.

At a detailed level of design, the OMAC API specification methodology will be presented and subscribes to the
following principles:

• API programming abstraction is used

• Object Oriented techniques for encapsulation, inheritance, specialization and object interaction
are applied

• Client/Server is the communication model

• Proxy Agents provide transparency of distributed communication

• Finite State Machine (FSM) is the behavior model

• Finite State Machine (FSM) are passed as data to then provide control

• Reusability of software components is achieved through foundation classes

• System objects are mirrored in human machine interface

• No specification of an infrastructure is attempted instead a commitment to a PLATFORM +
OPERATING SYSTEM + COMPILER + LOADER + INFRASTRUCTURE SUITE is necessary
for it to be possible to swap modules.

 .
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 1.  BACKGROUND

Most Computer Numerical Control (CNC) motion and discrete control applications incur high cross-vendor integration costs
and vendor-specific training. On the other hand, in a modular, standards-based, open-architecture controller modules can be
added, replaced, reconfigured, or extended based on the functionality and performance required. Modifications to a module
should provide equivalent or better functionality as well as offer different performance levels. Ideally, the module interfaces
should be vendor-neutral, plug-compatible and platform independent.

However, it is important to note that openness alone does not achieve plug-and-play. One vendor's idea of openness need not
be the same as another vendor's. Openness is but one step towards plug-and-play. In reality, plug-and-play openness is
dependent on a standard. This leads to the following definition of an open architecture controller:

An open architecture control system is defined and qualified by its ability to satisfy the following requirements:

Open provides ability to piece together systems from components, provides ability to modify the way a controller performs
certain actions, and provides ability to start small and upgrade as a system grows.

Modular refers to the ability of controls users and system integrators to purchase and replace controller modules without
unduly affecting the rest of the controller, or requiring extended integration engineering effort.

Extensible refers to the ability of sophisticated users and third parties to incrementally add functionality to a module without
completely replacing it.

Portable refers to the ease with which a module can run on different platforms.

Scalable allows different performance levels and size based on the platform selection. Scalability means that a controller may
be implemented as easily and efficiently by systems integrators on a stand-alone PC, or as a distributed multi-processor
system to meet specific application needs.

Maintainable supports robust plant floor operation (maximum uptime), expeditious repair (minimal downtime), and easy
maintenance (extensive support from controller suppliers, small spare part inventory, integrated self-diagnostic and help
functions.)

Economical allows the controller of manufacturing equipment and systems to achieve low life cycle cost.

Standard Interfaces allow the integration of off-the-shelf hardware and software components and a standard computing
environment to build a controller. Standard interfaces are vital to plug-and-play.

Degree of openness can be evaluated by comparing a claim of openness against the above requirements. Herein, the concept
of an open-architecture control system that supports openness, and the auxiliary requirements will be identified as “open,
openness or open architecture.”

1.1 ADVANTAGES OF OPEN ARCHITECTURE TECHNOLOGY

Based on specific instances of problems encountered by users of proprietary controllers, the following list of open-
architecture requirements was generated. An open architecture should be able to do the following:

• provide a migration path from existing practices;

• allow an integrator/end user to add, replace, and reconfigure modules;

• provide the ability to modify spindle speed and feed rate according to some user-defined process control
strategy;

• allow access to the real-time data at a predictable rate up to the servo loop rate;

• allow full 3-D spatial error correction using a user-defined correction strategy;

• decouple user interface software and control software and make control data available for presentation;

• provide capability to integrate controller with other intelligent devices;

• increase the ability for 3rd party software enhancements. Examples of 3rd party enhancements include:
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∗ replace a PID control law with a more sophisticated Fuzzy Logic control law

∗ collect servo response data with a 3rd party tool, and set tuning parameters in the appropriate control
law

∗ add a force sensor, and modify the feed rate according to a user defined process model

∗ perform high resolution straightness correction on any axis

∗ replace the user interface with a 3rd party user interface that emulates a user interface familiar to your
machine operators.

The initial validation strategy for the OMAC API would be to insure that this list of capabilities can be addressed.

1.2 IMPEDIMENTS TO OPEN ARCHITECTURE TECHNOLOGY

It is difficult to define a controller specification that is safe, cost-effective, and supports real-time performance.

A specification cannot be an island of technology. To be successful, a specification must satisfy legacy needs, factor in
current practices, as well as anticipate evolving technologies. Attaining an open architecture specification that is flexible and
isn't biased toward legacy or emerging technology can be hard.

Of great importance within the controls domain is the requirement for guaranteed, hard-real-time performance. Without this,
safety is at risk. Safety is a major concern voiced within the controller industry that is especially concerned with the issues of
liability and allocation of responsibility within an open architecture paradigm. Industry would have to adopt new practices for
open architecture controllers. A greater responsibility would be placed on the integrator. Conformance testing would play a
larger role. Conformance could require regression and boot-up testing and verification procedures to guarantee proper
operation.

A further hindrance is the fact that modules are not “self-contained.” Defining an infrastructure within which the modules can
operate is necessary and quite difficult. An infrastructure  is defined as the services that tie the modules together and allow
modules to use platform services. The infrastructure is intended to hide specific hardware and platform dependence; however,
this is often difficult to achieve.

Containing the scope of the specification is also difficult. Openness goes beyond run-time APIs. There can be “other” APIs,
including configuration, integration, and initialization. As an example, consider the simple use of a math library API. Even
there, specification of the math library implementation must be done to select either a floating point processor or software
emulation.

Finally, group and industry dynamics can be a problem. From a workgroup perspective, getting people to agree can be a
challenge because there are difficult trade-offs in modularization, scope, life cycle benefits, costs, time to market, and
complexity. It is recognized that industry will find it difficult to adopt the OMAC paradigm, due to entrenchment in the
legacy of prior implementations, the “comfort zone” of past practice and culture, the investment hurdle to effect change, and
the shortage of skilled resources. Proper acculturation, training and education of people and an orderly introduction,
demonstration, deployment, and scale-up will be needed to realize the potential benefits. From an industry perspective, many
companies do not perceive any direct benefit from an open architecture. Overcoming the workgroup inertia and industry
skepticism by promoting and demonstrating the benefits of open architecture remains a fundamental key to open architecture
acceptance.

.

2 REFERENCE MODEL

The OMAC API requirements were derived from the OMAC or “Open Modular Architecture Controller” requirements
document [OMA94]. The OMAC document describes the problem with the current state of controller technology and
prescribes open modular architectures as a solution to these problems. OMAC defines an open architecture environment to
include Platform, Infrastructure, and Modules.

In the interest of flexibility, scalability, and reusability, OMAC API does not specify a fixed architecture. Instead, OMAC
API assumes a reference model described by this abstraction hierarchy:
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• Foundation Classes

• Modules

• Architectural Design

• Detailed Design Framework

The Foundation Classes are derived from decomposing a generic controller into classes. These classes define the controller
class hierarchy. Foundation classes are then grouped into Modules that become plug-and-play components. A controller is
generated by selecting from different implementations of OMAC Modules containing object implementations of the
foundation classes. A system design is divided into two phases. The first phase is Architectural Design and deals with
system decomposition into OMAC Modules. The second phase is called Detailed Design and is responsible for detailing
individual object API, that is, the object attributes and methods. In this case, the design uses the OMAC API or extends the
API to suit the application.

2.1 FOUNDATION CLASSES

Primitive Data Types (int,double, etc.)

Units Measures Containers
(matrix)(length)(meter)

Geometry
(coordinate frame; circle)

Kinematic structure

Control components
(pid; Filters)

Axis components
(sensors, actuators)

Machine tool axis or robotic joints
(translational; rotational)

Axis groups Fixtures
Other tooling

Simple machines; tool-changers; work changers Processes

PlansMachining systems/cells; workstations

Figure 1: Controller Class Hierarchy

The decomposition of a generic controller into classes spans many levels of abstraction and has elements for motion control
and discrete logic necessary to coordinate and sequence operations. Figure 1 portrays the class hierarchy derived from a
controller decomposition. At the lower levels, the Foundation Classes are the building blocks that may be found in multiple
modules. For example, the class definition of a Geometry “position” would be found in most modules. Moving up the
hierarchy, the Foundation Classes broaden their scope to define device abstractions for such motion components as sensors,
actuators, and PID control laws. As the scope broadens however, not all software objects have physical equivalents. Objects
such as axis groups are only logical entities. Axis groups hold the knowledge about the axes whose motion is to be
coordinated and how that coordination is to be performed. Services of the appropriate axis group are invoked by user-supplied
plans.

Within Foundation classes, OMAC API define base classes and add to the base classes using the Object Oriented concept of
inheritance to define derived classes. OMAC API also uses inheritance to maintain levels of complexity. Level 1 constitutes
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base functionality seen in current practice. Level 2 constitutes functionality expected of advanced practices. Higher levels
constitute advanced capability seen in emerging technology, but unnecessary for simple applications.

2.2 MODULES

OMAC API defines a module to have the following characteristics:

• significant piece of software used in composing controller

• grouping of similar classes

• well-defined API

• well-defined states and state transitions

• replaceable by any piece of software that implements the API, states, and state transitions.

Using the OMAC Specification [OMA94] as a baseline, Figure 2 diagrams the OMAC API Modules including a brief
description of a module's general functional requirements. The Modules have the following general responsibilities:

Axis modules are responsible for servo control of axis motion, transforming incoming motion setpoints into setpoints for the
corresponding actuators.

Axis Group modules are responsible for coordinating the motions of individual axes, transforming an incoming motion
segment specification into a sequence of equi-time-spaced setpoints for the coordinated axes.

OMAC Base Class provides a uniform API base class for an OMAC module. The OMAC base class defines a state model
and methods for start-up and shutdown. The OMAC Base Class defines a uniform name and type declaration and provides an
error-logging interface. The OMAC Base Class maintains a global directory service for name lookup and reference binding.

Capability is an object to which the Task Coordinator delegates for specific modes of operation. Capability corresponds to
the traditional CNC modes (AUTO, MANUAL, MDI, etc.) At the Capability Level, there is no coordination between
Capabilities. A Capability is a Control Plan Unit (see Control Plan module) with the distinction being that a Capability is
Control Plan Unit associated with a Task Coordinator module.

Control Law components are responsible for servo control loop calculations to reach the specified setpoints.

Control Plan consists of a series of related Control Plan Units (CPU) and forms the basis of control and data flow within
the system. A Control Plan Unit is a base class that contains finite state logic. A Motion Segment is a derived class of
Control Plan Unit for motion control. Discrete Logic Unit is a derived class of Control Plan Unit for discrete logic control.
Capability  is a derived class of Control Plan Unit used within a Task Coordinator and because it is such a significant piece of
software, it is also considered an OMAC API module.
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Control Plan Generator modules are responsible for translating application programs into Control Plans. As examples,
programs written in the RS274D [RS279] and IEC 1131-3 [IEC93] languages can be translated into Control Plans.

Discrete Logic modules are responsible for implementing discrete control logic or rules that can be characterized by a
Boolean function from input and internal state variables to output and internal state variables. More than one discrete logic
module is permitted, but not necessary. Multiple discrete logic modules is similar to having many PLC's networked together
within the same computing platform.

Human Machine Interface (or HMI) modules are responsible for human interaction with a controller including presenting
data, handling commands, and monitoring events. Defining a presentation style (e.g., GUI look and feel, or pendant keyboard)
is not part of OMAC API effort.

I/O Points are responsible for the reading of input devices and writing of output devices through a generic read/write
interface. The goal is to provide an abstraction for the device driver. Logically related IO may be clustered within a Discrete
Logic module.

• trajectory following (loop
closure)

• gain tuning

Control Law

• kinematics calculations
• coordinate system

translations
• kinematics coordinate

transformation
• tool offsets, tool radius

correction
• other kinematic

compensations

Kinematics

• multi-axis coordination
• block look-ahead
• velocity profile generation
• feedhold
• stop

Axis Group

• specialization of finite state
machine

• graph of Control Plan units
or nested control plans

• units are control instructions

Control Plan

• Controlling one axis of
motion

• uses control law
• servo compensation
• axis properties
• axis state

Axis

• feedrate override
• spindle speed override

Process Model

• remote access
• transfer file across network
• program invocation and job

control (e.g. start, stop,
pause, etc. program)

• event monitoring

Machine-to-Machine

• specialization of finite state
machine

• perform 1131-like functions
• mode switching

Discrete Logic

• read/write data
• data subscription
• data notification
• sensor integration
• domain-independent data

sampling

IO Points

• specialization for IEC1131,
RS274D, etc.

• generate control plan

Control Plan Generator

• start-up / shutdown
• system snapshot
• mode selection
• configuration
• diagnostics
• maintenance
• setup

Human-Machine Interface

• naming, version control
• directory and naming
services

OMAC Base Module

• Coordination control plan
units

• corresponds to NC operating
modes

• operates independently of
other capabilities

Capability

• specialization of finite state
machine

• start-up, shut-down
sequencing

• task coordination
• control cycling (i.e. request

next unit from control plan)
• error-logging

Task Coordination

Figure 2: OMAC Modules
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Kinematics Models modules are responsible for geometrical properties of motion. Computing forward and inverse
kinematics, mapping and translating between different coordinate systems, applying geometric correction and tool offsets, and
resolving redundant kinematic solutions are examples of kinematic model functionality.

Machine-to-Machine modules are responsible for connecting and communicating to controllers across different domains
(address spaces). An example of this functionality is the communication from a Shop Floor controller to an individual
machine controller on the floor.

Process Model is a module that contains dynamic data models to be integrated with the control system. Process control
modules (not detailed by this specification) produce adjustments or corrections to nominal rates and path geometry. Feedrate
override and thermal compensation are examples of process model functionality. The process model is crucial to the concept
of extensible open systems.

Task Coordinator modules are responsible for sequencing operations and coordinating the various motion, sensing, and
event-driven control processes. The task coordinator can be considered the highest level Finite State Machine in the
controller.

Some clarifying observations about modules include:

• Interchangeable modules may differ in their performance levels.

• Modules may provide more functionality (added value) than required in the specification. Specialization
of a module interfaces is the mechanism to achieve additional functionality.

• A controller may have more than one instance of a module.

• Modules can be explicitly control-related (e.g., Axis) or be inheritance-related encapsulating common
functionality (e.g., OMAC Base Class.)

• Modules do not need to run as separate threads (or intelligent agents.) Systems can be built from a single
thread of execution.

• Modules can contain multiple threads of execution.

• Modules may be used to build other components. For example, a discrete mechanism, such as a tool
changer component, can be built using OMAC modules.

• Multiple instances of a module are required to handle different configurations. For example, assume a
system with 3 axes x, y, z  and a spindle . Three Axis Group objects would be created at
configuration time, ag1, ag2, ag3 , with the following configuration:

 ag1: x, y, z
ag2: spindle
ag3: x, y, z, spindle

For most machining where the motion control and the spindle are loosely related, references to ag1  and ag2  would be used.
However to do a Rigid Tap requiring tight synchronization of the spindle and motion, a reference to ag3  would be used.

2.3 ARCHITECTURAL DESIGN

Since there is no explicit OMAC reference architecture, composing a system architecture from OMAC modules is left to the
developer. This offers much flexibility, but without guidance, can be confusing. This section will give some application
architecture examples for clarification. This section starts with a simple application and then develops a series of examples to
illustrate the stages of development one might encounter when building an application architecture. The examples highlight
the static relationship between OMAC modules (as opposed to the data flow.) However, an underlying assumption is
directives flow from top to bottom.

2.3.1 OPERATOR CONTROL OF A SET OF IO POINTS EXAMPLE

The simplest case is an operator controlling several IO points. The OMAC API model allows the connection of a Human
Machine Interface (HMI) object to several IO points. Figure 3 shows the simple connection between HMI and IO points.
Within the diagram, an arrow indicates a reference from one object to another.

The rationale for such a simple example is to show that the OMAC API is not monolithic, and a small system together can be
put together. With this ability, OMAC systems can start small and be pieced together.
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HMI

IO POINTS

Figure 3: Operator Control of a Set of IO Points

2.3.2 ONE AXIS BOOTSTRAP

After establishing an HMI and IO connection, the natural progression in building a CNC machine tool controller is to add an
axis of motion under manual control. This scenario is typical in offline assembly and testing of an axis that may eventually be
assembled in a multi-axis CNC machine tool. Jogging and Homing are the primary functionality used. At this point, there is
no coordination with any other motion, mechanism, or state in the NC machine tool. During this stage of the assembly of a
machine tool, it is also helpful to perform the calibration, tuning, or health monitoring tests.

The Axis Module coordinates IO points. Assume that the IO points will consist of a PWM motor drive, an amplifier enable
control, an amplifier fault status signal, an A-QUAD-B encoder with marker pulse and switches for home and axis limits.
Figure 4 shows a one-axis system that uses two Control Laws, one for PID control of Position, and another to do PID control
of velocity. The Axis will output accelerations to the actuator and read encoder values through IO points referenced by the
Axis module. For operator control of the axis, an HMI module mirrors exists for the Axis module as well as mirrors for each
Control Law module. The mirrors provide a snapshot of control system objects and use proxy agents for communication. 

AXIS
HMI

AXIS

IO POINTS IO POINTS

Control Law
HMI

Control Law
HMI

PID
Control Law

PID
Control Law

(Position)

(Velocity)

Method

Figure 4: Simple, Single Axis, Jog/Home Only System

2.3.3 PROGRAMMABLE LOGIC EXAMPLE

Consider a case of work-handling equipment that provides peripheral functions for a CNC machine tool. The equipment
includes two hydraulically actuated, two-position on-off mechanisms, named, Loader and Unloader. Let their sensing,
actuation, and control be under a Discrete Logic module, named LUNL whose sequence of operations was originally specified
in some manner conforming to IEC 1131-3, and subsequently translated into a Control Plan Unit, named CPlunl .
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Discrete Logic
HMI

Discrete Logic

IO POINTS IO POINTS IO POINTS

Control Plan
Generator HMI

Control Plan
Generator
(1131-3)

Control Plan

Control Plan

Programming
Phase

Run Time
Phase

Figure 5: Loader/Unloader Discrete Logic Control

Figure 5 illustrates the relationship of different OMAC modules within this LUNL application. Within the block diagram, two
phases, Programming Phase and Run Time Phase, are shown. However, other phases are to be considered including a
Configuration Phase and an Initialization Phase. The following steps sketch the different phases of system development.

I. In the Programming phase,

a. Develop IEC 1131-3 code that performs logical mapping of IO functionality

b. Generate a number of Control Plan Units (CPU), possibly one associated with each state.

c. Group Control Plan Units to become a LUNL Control Plan (i.e., CPlunl )

II. At configuration phase,

a. Perform physical mapping of IO functionality

b. Load Control Plan into the Discrete Logic Module

III. At initialization phase,

a. Resolve external object and module references

b. Register events

IV. At runtime phase,

a. Clients (e.g., HMI or IO Points) generate events

b. The LUNL Discrete Logic Module executes each ControlPlanUnit at an assigned scan rate. A ControlPlanUnit
executes as a Finite State Machine (FSM).

2.3.4 DRILLING MOTION CONTROL EXAMPLE

An example describing programmed NC for one-axis drilling will be developed. A typical one-axis drilling workstation would
perform holeworking operations, e.g., drilling with a spindle drill-head, boring a precision bore, counter-boring the bored
hole, or probing the (axial) location of the counterbored shoulder.
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Process
Model

Kinematics

Kinematics

Axis Group

AXIS

Control Law

Task Coordinator

Axis Group

Axis GroupKinematics

AXIS

Control Law

SpindleMotion

Control
Plan

Generator
Discrete

Logic

...ControlPlanUnit

ControlPlanUnit

ControlPlanUnit

ControlPlanUnit

Methods

Methods

Methods

Methods Methods
Methods Methods

MethodsMethods

Methods

Methods
Methods

ControlPlanUnit

Methods

Tight Synchronization
of Motion and Spindle

Process
Model

Process
Model

IO POINTS IO POINTS

IO POINTS

IO POINTS

IO POINTS

IO POINTS

Figure 6: Drilling Example

Figure 6 illustrates the module and component relationships for a drilling application. Z motion requires an Axis module for
servoing and an AxisGroup module for Cartesian motion. Spindle control requires another Axis module to interface to drive
components assumed to provide a facility for setting spindle speed and direction and to start and stop spindle rotation. The
Spindle requires an Axis Group for rate and override control. A third Axis Group is necessary for synchronized control of
both the Motion Axis and the Spindle Axis (shown as shaded with dashed line connections). Generally, the Spindle Axis will
not need a Control Law, however, when it is synchronized with motion it will require servoed control.

In the diagram, a Task Coordinator exists to provide program control. A ControlPlanGenerator module translates a part
program into ControlPlanUnits. The primary command communication between modules is reflected in the diagrams by
showing the keyword Method  or ControlPlanUnits  (which uses a method to pass it) next to an arrow. A Discrete
Logic Module, typical of the previous example, exists as an equivalent for part loading and unloading, as well as machine
state (e.g., temperature, estop). To improve predictability and reduce variation, a Process Model module will exist to integrate
sensing and control to prevent tool breakage by monitoring spindle torques and thrust forces. A simple Kinematics module
exists to model the workspace and handle different tool offsets and part placements.
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2.4 DETAIL DESIGN FRAMEWORK
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Figure 7: Design Framework

The Detailed Design is responsible for detailing individual object API, that is, the object attributes and methods. At this
phase, one determines which objects are available, the extent of object capabilities, and whether the objects need to be bought
or built. This phase corresponds to putting a system together with the OMAC API Framework. Frameworks are object-
oriented technology consisting of sets of prefabricated software and building blocks that are extensible and can be integrated
to execute well-defined sets of computing behavior. Frameworks are not simply collections of classes. Rather, frameworks
come with rich functionality and strong “pre-wired” interconnections between the object classes.

This contrasts with the procedural approach where there is difficulty extending and specializing functionality; difficulty in
factoring out common functionality; difficulty in reusing functionality that results in duplication of effort; and difficulty in
maintaining the non-encapsulated functionality. With frameworks, application developers do not have to start over each time.
Instead, frameworks are built from a collection of objects, so both the design and the code of a framework may be reused.

In the OMAC API Framework the prefabricated building blocks are the implementations of 1) OMAC modules and 2)
framework components (e.g., ControlPlanUnits). As a simple example, Figure 7 illustrates a Detailed Design for assembling a
controller application. An application developer buys modules and components as commercial off-the-shelf (COTS)
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technology. Then, the application developer configures the modules and “puts the pieces together” by linking the purchased
COTS “.o” object files.

Modules are configured based on their references to other objects. For the Axis modules in the example, references are
needed for position (P), velocity (V) or torque (T) Control Law modules. These references could be to objects in software,
hardware or some combination of hardware and software. For software P control, a Control Law object from the Software set
is selected. For hardware P control, a Control Law object from the SERCOS[IEC95] set is selected. The applications
developer is also responsible for mapping the logical IO points onto physical devices (e.g., D/A or CanBus).

Modules are also configured based on the selection of Control Plan Units (CPU) that define module responsibilities. Within
the example, there is a Task Coordinator module that has containers for inserting Capability CPU (in the figure represented by
a -C- framed by a diamond). The Capabilities include Manual, Automatic or Jogging. The application developer is free to put
one or more of these Capabilities into the Task Coordinator or develop a unique Capability. For Control Plan Generator and
Axis Group, the application developer is already provided Line and Arc CPU but can plug in NURB or Weave CPU.

Using the OMAC API Framework, application development involves three groups:

Users define the behavior requirements and the available resources. Resources include such items as hardware, control and
manufacturing devices, and computing platforms. For behavior, the user defines the performance and functionality expected
of the controller. Performance includes such characteristics as speed or accuracy. Functionality defines the controller
capability such as the ability to handle planar part features versus complex part features.

System Integrators select modules and framework components to match the application performance and functional
requirements. The system integrator configures the modules to match the application specification. The system integrator uses
an integration architecture to connect modules and verify system operation. The system integrator also checks compliance of
modules to validate the user-specification of performance and timing requirements.

Control Component Vendors provide module and framework component products and support. For control vendors to
conform to an open architecture specification, they would be required to conform to several specifications including the
following:

• customer specifications

• module class specification

• system service specification

The system service describes the platform and infrastructure support (such as communication mechanisms) and the resources
(disks, extra memory, among others) available. Computer boards have a device profile that includes CPU type, CPU
characteristics and the CPU performance characteristics. Included within the profile is the operating system support for the
CPU. A spec sheet or computing profile [SOS94] is required to describe the system service specification that would include
such areas as platform capability, control devices, and support software.
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3 SPECIFICATION METHODOLOGY

The primary goal of the OMAC API workgroup is to define standard API for the Modules. This section will refine the concept
of  “API” and describe the OMAC API specification methodology. The API specification methodology applies the following
principles:

• Stay at API level of specification. Use IDL or MIDL to define interfaces.

• Use Object Oriented technology.

• Use general Client Server communication model, but use state-graph to model state behavior.

• Use Proxy Agents to hide distributed communication.

• Do not specify an infrastructure.

• Finite State Machine (FSM) is model for data and control.

• Mirror system objects in human machine interface.

The following sections will discuss these principles.

3.1 API SPECIFICATION

API stands for Application Programming Interface, and refers to the programming front-end to a conceptual black box. The
API consists of  a list of signatures per black box. A signature specifies the front-end with a function name, calling sequence,
and return parameter. For example, “double cos(x)” specifies a cosine signature. The API is concerned with the
signature, not the implementation. For the cosine, implementation could be it table-lookup or Taylor series. However, the API
does specify performance,  which in turn, affects the implementation. For the cosine API, performance may dictate speed over
accuracy so that computing a cosine should be as fast and not necessarily as accurate as possible.

A standard API is helpful because programming complexity is reduced when one alternative exists as opposed to several. For
example, the cosine signature is generally accepted as cos(x) , not cosine(x) . This is a small but significant
standardization. At a programmatic level, the importance of a standard API can be seen within the Next Generation Inspection
Project (NGIS) at NIST[NGI]. The NGIS project has integrated three commercial sensors and one generic sensor into the
Coordinate Measuring Machine controller. Each sensor had a different “front-end” - one had a Dynamically Linked Library
(.DLL) interface, one had a memory mapped interface, one had a combination port and memory mapping. None of the sensors
had the same API. Yet, all of the sensors were “open.”

APIs can be defined in any number of programming languages. This creates a problem when defining a standard API since the
controller industry uses a variety of languages and platforms. OMAC API chose IDL, (Interface Definition Language)
[COR91] or MIDL (Microsoft IDL) [MIDL ] ,  as its specification language since it solves this problem. IDL is a technology-
independent syntax for describing interfaces. In IDL, interfaces have attributes (data) and operation signatures (methods). IDL
supports most object-oriented concepts including inheritance. IDL translates to object-oriented (such as C++ and JAVA) as
well as non-object-oriented languages (such as C). IDL specifications are compiled into header files and stub programs for
direct use by application developers. The mapping from IDL to any programming language could potentially be supported,
with mappings to C, C++, and JAVA available.

To clarify the problem of unifying the specification, consider the mapping of the OMAC API IDL onto three different
validation testbeds. Figure 8 illustrates mapping IDL to the different implementation strategies. For ICON, the standard API
in IDL has to be mapped into JAVA. At the University of Michigan, they are using the ROSE CASE tool to design their
controller. ROSE accepts C++ header through a reverse engineering process. At the NIST testbed, the IDL will be translated
into C++ headers and use the Enhanced Machine Controller and its infrastructure[PM93]. For these three implementations,
only the IDL specification can be mapped into all the languages needed to support the applications.
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Figure 8: Specification Language Mapping

3.2 OBJECT ORIENTED TECHNOLOGY

OMAC API uses an object-oriented (OO) approach to specify the modules' API with class definitions. The following terms
will define key object-oriented concepts. A class is defined as an abstract description of the data and behavior of a collection
of similar objects. Classes aggregate data and methods.  Class definitions offer encapsulation hiding details of a classes
implementation. An object is defined as an instantiation of a class. For example, SERCOS-Driven  Axis describes an
instance of an Axis class in the running machine controller. A three-axis mill would have three instantiations of that class -
the three objects implementing that class. An object-oriented program is considered a collection of objects interacting
through a set of published APIs. A by-product of the object-oriented approach is data abstraction, which is an effective
technique for extending a type to meet programmer needs.

3.2.1 INHERITANCE

Inheritance is useful for developing data abstraction. OO classes can inherit the data and methods of another class through
class derivation. The original class is known as the base or supertype class and the class derivation is known as a derived or
subtype class. The derived class can add to or customize the features of the class to produce either a specialization or an
augmentation of the base class type, or simply to reuse the implementation of the base class. To achieve a object-oriented
framework strategy[Le95], all OMAC API class signatures (methods) are considered “virtual functions.” Virtual functions
allow derived classes to redefine an inherited base class method.

To illustrate inheritance, consider the case of a simplified Axis module acting as a server. Assume that the Axis API only
allows the functionality to set a variable x. The following sketches a base and a derived Axis class definition.

class Axis
{
  virtual void setX(float x);
private:
  double myx;
}

application()
{
  Axis ax1;
  ax1.setX(10.0);
}

To extend the base server class, a class myAxis is derived to add an offset to its X value before each set. This could also
be achieved on the server side if so desired.

class myAxis : public Axis
{
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        virtual void setX(float x){ x= x + offset; Axis::setX(x); }
  private:
        double myx;
        double offset; // set elsewhere for offset calculation
}

application()
{
        Axis ax1;
        myAxis ax2;
        double val=1.0;
        double offset =10.0;

        ax1.setX(val+offset); // explicit offset in application code
        ax2.setX(val);        // offset hidden by configuration
}

3.2.2 SPECIALIZATION

OMAC API leverages the OO concept of inheritance to attain specialization. Specialization is useful for managing the scope
of an API. For example, when defining a control law, many options exist including PID, Fuzzy Logic, Neural Nets, and
Nonlinear. This proliferation of options begs for a compartmental approach. The OMAC API approach is to define a base
class (generally corresponding to one of the OMAC Modules) and for each option derive a specialized class.

Specialization has many benefits. It helps manage the scope of capabilities which reduces complexity. It allows differing
terminology based on need (e.g., weights versus gains). Specialization provides a technique to handle evolving technology by
allowing new derived class to be defined when necessary. To expedite the OMAC API effort, only options considered most
important have been derived.
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Figure 9: General Control Law

The control law module will be used to illustrate specialization. The responsibility of the Control Law module is conceptually
simple - use closed loop control to cause a measured feedback variable to track a commanded setpoint value using an
actuator. Figure 9 illustrates the definition of a base control law class. The concept of tuning is encapsulated within the black
box and is conceptually controlled via “knob turning.” The concept of accepting third party signal injection is handled by the
inclusion of pre-and post-offsets (e.g., FollowingError ). These offsets allow sensors or other process-related
functionality to “tap” and dynamically modify behavior by applying some coordinate space transformation. The IDL
definition of the illustrated control law module follows. The IDL keyword interface  signifies the start of a new interface,
corresponding to a C++ class.

interface CONTROL_LAW
{  // Parameters
  void setCommanded(double setpoint);
  double getCommanded();
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  void setCommandedDot(double setpointdot);
  double getCommandedDot();

  void setCommandedDotDot(double setpointdotdot);
  double getCommandedDotDot();

  void setOutput(double value);
  double getOutput();

  void setFeedback(double actual);
  double getFeedback();

  void setFollowingError(double epsilon);
  double getFollowingError();

  // Offsets
  void setFollowingErrorOffset(double preoffset);
  double getFollowingErrorOffset();

  void setOutputOffset(double postoffset);
  double getOutputOffset();

  void setFeedbackOffset(double postoffset);
  double getFeedbackOffset();

  void setTuneIn(double value); // enable with breakLoop
  double getTuneIn();
};

 Each CONTROL_LAW specialization is a subtype whereby each subtype inherits the definition of the supertype. By applying
this concept, an evolutionary process evolves to adapt to changes in the technology. At first, only highly-demanded subtypes,
such as PID, were handled. Figure 10 conceptually illustrates the PID specialization of the control law. The IDL definition of
the PID control law follows.

interface PID_TUNING: CONTROL_LAW
{ // Attributes
  double getKp();
  double getKi();
  double getKd();

  void setKp(double val);
  void setKi(double val);
  void setKd(double val);

   double getKcommanded();
   double getKcommandedDot();
   double getKcommandedDotDot();
   double getKfeedback();

   void setKcommanded(double val);
   void setKcommandedDot(double val);
   void setKcommandedDotDot(double val);
   void setKfeedback(double val);
};

OMAC API also uses inheritance to maintain levels of complexity. Level 0 would constitute base functionality seen in current
practice. Level 2 would constitute functionality expected of advanced practices. Level 3, 4,..., n would constitute advanced
capability seen in emerging technology, but unnecessary for simple applications.
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Figure 10: PID Control Law

3.3 CLIENT SERVER BEHAVIOR MODEL

OMAC API adopts a client server model for inter-object communication. In the client/server model, an object is a server and
a user of an object is called a client. Objects can act as both a client and a server. Objects cooperate by having clients issue
requests to the servers. The server responds to client requests. For OMAC API, a client invokes class methods to achieve the
described cooperative behavior. A client uses accessor methods to manipulate data. Accessor methods hide the data's
physical representation from the abstract data representation.

Standard client-server requests result in a synchronous execution of operation. The synchronous execution has a client-server
roundtrip  where the client issues a request, server receives a method invocation, performs the corresponding method
implementation, and sends a reply back to the client. OMAC API defines three types of client-server requests: (1) parametric
requests, (2) directive requests and (3) monitor requests. State space logic may be required to manage client-server
interaction.

Parametric requests are the get/set methods that are, in theory, satisfied in one roundtrip. Parametric requests do not require
state space logic.

Directive requests are events which cause a change in the server's state space (or state transition) and results in a new server
state. These directive requests may run one or many cycles - such as, for an Axis module completing a home()  operation.
Coordination between the client and server requires state space logic and is based on the server's Finite State Machine model

Monitor  requests coordinate the execution of a module, for example, processServoLoop()  or isDone()  for Axis
module. Monitor requests are coordinated by the state space logic. The processServoLoop  method sends an event to
Axis module execution to be interpreted by its state space logic. Invoking processServoLoop every servo loop period attains
cyclic execution of the Axis module. In this cyclic mode, the Axis Module would be running as a software servomechanism:
at every period, it accesses data (e.g., commanded position, actual feedback) and executes a transform function to derive a
new setpoint. Status methods are necessary to monitor the progress of a directive request.

Client Directive and Monitoring requests may come from separate threads of control. Figure 11 illustrates a server with
multiple clients running in two separate processes: an Axis Group process for issuing setpoints and a Periodic Updater process
to coordinate execution. (These processes may be running in one or more threads.) Generally, the Directive service requests
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would come from an Axis Group module that is issuing setpoints to multiple axes. A Scheduling Updater module running in
another thread of execution provides timing, synchronization and sequencing service for the Axis module. This Scheduling
Updater module may be tied to some hardware device (such as a timer) to guarantee periodic execution behavior.
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Figure 11: Multiple Threads of Control

3.3.1 DIRECTIVE REQUESTS DISCUSSION

Client directive requests are serviced as client-push events. (Server-push is a more difficult problem and is discussed in
Section 5.2.) In a client-push request, events are  “pushed” to the server via method calls. Client-push events may be queued
and ultimately cause state transitions. Below is a code sketch of the client-push event model for an Axis  class that defines
two methods processServoLoop  and home. An AxisFSM  class is defined to handle the events caused by
processServoLoop  and home. Whenever the home method is invoked, it inserts a HOME_EVENT event into the
Axis  FSM. The FSM has an internal queue (i.e., evq ) for handling events. The FSM may optionally spawn a separate
thread of control (i.e., FSMThread() ) for event handling. The isDone()  monitor request is used to determine when the
home event has completed.

// This is the public interface
class Axis : OmacModule
{
public:
    processServoLoop();
    home();
    boolean isDone();
private:
    AxisFSM fsm;
    boolean myDone;
};

// This is hidden in the implementers code
Axis::processServoLoop() { AxisFSM.handleEvent(AxisFSM::PROCESS_SERVO_LOOP_EVENT); }
Axis::home() { AxisFSM.handleEvent(AxisFSM::HOME_EVENT); }
Axis::isDone() { return myDone; }

class AxisFSM : FSM {
    enum { PROCESS_SERVO_LOOP_EVENT,  HOME_EVENT};
    MsgQueue evq;
    int curState;
    void handleEvent(EV_num)
    {
        evq.send(EV_NO);
    }
    void * FSMThread() // optional thread, this could be done in handleEvent
    {
        int evNum;
        evq.receive(&evNum);
        callAction(evNum, curState);
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    }
    void homeUpdateAction() { /* perform homing */ }
    void processServoLoopAction() { /* evaluate state */ }
};

A key to the event model is to support local or remote method invocation identically. The next section on proxy agents
explains how this event model provides a transparent interface.

Server request actions should be as short as possible. In the example, the simple enqueuing of events provides an efficient
interface model. The rationale for short request cycles is to reduce the amount of time the client will wait while the server
services the request. Evaluating system timing and performance is difficult unless the client-server round-trip time is
bounded.

3.4 PROXY AGENT TECHNOLOGY

Client/server interaction can be local or distributed. In local interaction, the client uses a class definition to declare an object.
When a client accesses data or invokes object methods, interaction is via a direct function call to the corresponding server
class member. At its simplest, local interaction can be achieved with the server implemented as a class object file or library.
Interaction is achieved by binding the client object to a newly created server object implementation. Such a binding could be
done by static linking, with a dynamic linked library (DLL), or through a register and bind process that does not use the linker
symbol table.

When distributed  service is needed a proxy agent is used. A proxy agent is a set of objects that are used to allow the
crossing of address-space or communication domain boundaries[M.S86]. The class describing a proxy agent uses the API of
some other class (for which it is a proxy) but provides a transparent mechanism that implements that API while crossing a
domain boundary. The proxy agent could use any number of lower level communication mechanisms including a network,
shared memory, message queues, or serial lines.

Below is a code example to illustrate the concept of proxy agents. We will assume that we have defined an axis module by the
class Axis that has but one method setX(); . The following code would be found in the axis module header file (or API
specification):

class Axis : Environment
{
public:
  void setX();
private:
  double myX;
}

A user would then develop code to connect or bind to the axis module server, which in this case has the name “Axis1.” The
_bind  service is similar to a constructor method, but returns a server reference pointer rather than an address reference
pointer. The _bind  keeps track of the number of client pointer references to the server. The bind establishes a client/server
relationship with the axis module. The application code is the client, and when Axis methods are invoked, a message is sent to
the server. In the following code, the application sets the x variable to 10.0:

application(){
        Axis * a1;
        a1 = Axis::_bind(“Axis1”);
        a1->setX(10.0);
}

If the server is co-located with the application, it is trivial to implement the object server. The Axis::setX  implements
the value store.

Axis::setX(double _x){ myX = _x; }

However, for distributed communication, Axis::setX  is defined twice - once on the client side and once on the server
side. On the client side we set up the remote communication, which in this case, is an overview of a remote procedure call.

Axis::setX(double _x){
        callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
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}

On the server side, a server waits for service events (such as the bind , and the setX  method). A corresponding
Axis::setX  is defined to handle the x variable store. The server technology could handle events in the background or use
explicit event handling. In either case, the actions of the server are transparent to the client.

Axis::setX(double _x){ myX = _x; }

server(){
        /* register rpc server name */
        while(1) { /* service events */ }
}

To achieve transparency across implementations, all methods within the OMAC API contain a parameter field to allow
customization of the infrastructure by defining an environment variable at the end of the parameter list. This is an implicit
augmentation performed by an IDL compiler. For any OMAC API calling parameter list, the ENVIRONMENT\ parameter
appears at the end of the calling sequence, as in:

void move(double x, double y, double z, ENVIRONMENT env = default);

The ENVIRONMENT can be used in several ways to tailor the infrastructure, such as to specify the remote communication
protocol and the necessary parameters during transmission. The ENVIRONMENT\ can also be used to set an invocation time-
out-value or to pass security information. The ENVIRONMENT can be a “stubbed dummy” and ignored by the called
method.

The ENVIRONMENT parameter provides transparency between invoking function calls locally or invoking function calls
remotely. To provide for transparency between local and remote calls, the ENVIRONMENT\ parameter field has a default-
argument-initializer, so that local (or remote) calls need not supply this parameter.

The actual infrastructure supported by the ENVIRONMENT parameter will not be specified within this OMAC API
document. Systems with a proprietary remote communication technology may use the
[0] ENVIRONMENT parameter field to enable distributed processing. The ENVIRONMENT can also be used as a trap door
to hide other nonstandard operations.

3.5 INFRASTRUCTURE

The infrastructure deals primarily with the computing environment including platform services, operating system, and
programming tools. Platform services include such items as timers, interrupt handlers, and inter-process communications. The
operating system (OS) includes the collection of software and hardware services that control the execution of computer
programs and provide such services as resource allocation, job control, device input/output, and file management. Real Time
Operating System Extensions can be considered platform services since these extensions are required for semaphoring, and
pre-emptive priority scheduling, as well as local, distributed, and networked interprocess communication. Programming tools
include compilers, linkers, and debuggers.

The OMAC API does not specify an infrastructure because many of the infrastructural issues are outside the controller
domain, and it would be better handled by the domain experts. Further, it is more cost-effective to leverage industry efforts
rather than to reinvent these technologies. For example, commercial implementations of proxy agent technology are available.
Microsoft has developed and released DCOM (Distributed Common Object Model) [DCO] for Windows 95 and Windows
NT. Many implementations of CORBA (Common Object Request Broker Architecture) [COR91] are available and Netscape
incorporates an Internet Interoperable ORB Protocol (IIOP) inside its browser. The question concerning the hard-real-time
capability of such products remains. But, industry is acting to solve this problem. In the interim, control standards that could
provide a real-time infrastructure are available [OSA96].

Because there are so many competing infrastructure technologies, OMAC API has chosen to let the market decide the course
of the infrastructure definition. As such, to achieve plug-and-play module interchangeability, a commitment to a Platform +
Operating System + Compiler + Loader + Infrastructure suite is necessary for it to be possible to swap OMAC object
modules.
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3.6 BEHAVIOR MODEL

For the OMAC API, behavior in the controller is embodied in Finite State Machines (FSM). OMAC API uses state
terminology from IEC1131[IEC93]. An FSM step represents a situation in which the behavior, with respect to inputs and
outputs, follows a set of rules defined by the associated actions of the step. A step is either active or inactive. Action is a
step a user takes to complete a task that may invoke one or more functions, but need not invoke any. A transition  represents
the condition whereby control passes from one or more steps preceding the transition to one or more successor steps.

 For the OMAC API, the following concepts apply. The receipt of a message causes an event that is evaluated with the FSM
and may cause a state transition. An object method invocation is the mechanism in which messages are sent to cause an
event.  For distributed communication, OMAC API makes the assumption that the proxy agent does the encoding of methods
into messages and the decoding of the transmitted message into the corresponding method calls.

3.6.1 LEVELS OF FINITE STATE MACHINES

For an OMAC API module, there can be nesting of FSMs. OMAC API does not dictate the number of levels of FSM. In
general, an outer administrative FSM exists to handle activities that include initialization, startup, shutdown, and, if relevant,
power enabling. The administrative FSM must follow established safety standards. When the administrative FSM is in the
READY state, it is possible to descend into a lower level FSM.
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Figure 12: Generalized State Diagram

OMAC API defines the OMAC Base Class module to provide a uniform administrative state model across modules. The
OMAC Base Class state model is illustrated in Figure 12. The administrative state model describes the start-up, shutdown,
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enabled/ready, configured, aborted, and initialization operations that form the baseline of a module state space. States have
methods (e.g., init() , startup() ) to cause state transitions.

To enter into a lower FSM, the module enters into the “executing” state as shown Figure 12. In the “executing” state,
client/server coordination uses a lower FSM for coordination. This lower FSM is module- and application-dependent. This
lower FSM, in turn, can have an FSM embedded within it so that further nesting of embedded FSMs is possible.

 

...

Administration
FSM

Reset, init, enabled
Ready, executing

Operation
FSM

Auto, manual

Dominion FSM
Buy, idle

Paused, running

pause

pause

pause

Figure 13: Levels of FSM

Figure 13 shows the nesting of FSM levels. Within the figure, the FSM icon is represented by a rectangle inside a diamond.
The dotted FSM icon represents an optional FSM. The nesting of one or more lower level operation FSMs is possible
depending on system complexity. Within the nesting of the FSM shown in Figure 13, an “operational” FSM may handle
different NC modes corresponding to “auto,” “manual,” or “MDI”. For example, at the operation level for part programming,
there may be another level of FSM to handle a family of parts. The designer of a particular control system determines the
number of nested FSM levels, depending upon the complexity and organization of the controlled system. The lowest level
FSM or dominion FSM monitors the current focus of control. The dominion FSM “rule” over lower level objects. There may
be one or more dominion FSM at the lowest level within an OMAC module.

For OMAC API, method invocations result in events to be propagated from the client to the server that may cause server state
transitions. Events are evaluated within the highest level FSM and then recursively propagated through each lower level FSM.
For example, in Figure 13 a pause  event is received at the highest Administration level and is evaluated. If the Operation
FSM supports a pause  method then this method is invoked and the event evaluated. This event evaluation and recursive
cascading of the event may cross module boundaries and propagate all the way to the “bottom” FSM in the application
controller.

A major assumption concerning event propagation is the availability of the event method in a lower FSM. In the previous
example, there was an underlying assumption that all lower-level FSM supported the pause  method. This underlying
assumption may or may not hold. For the interim, the following rules characterize the FSM behavior with regard to specifying
an event space:

• an OMAC module Administrative FSM supports all the events within the OMAC API Base FSM



 THE OMAC API  SET WORKING DOCUMENT

  VERSION 0.18

 2/26/98 22

• any lower level FSM within an OMAC module supports both the OMAC Base FSM event space as well any event
specializations that an OMAC module supports. For example, the Axis Group module defines events for hold,
pause, resume  and these would have to be supported by lower level FSM contained within the Axis Group.

• Control Plan Units may have their own event model. It is unclear if they must support the complete OMAC Base
Class set of events.

• optionally, an introspective query of an FSM could be specified to see if an event is supported (e.g.,
canPause() ). This mechanism is similar to that of reusable component functionality of JavaBeans that provides
for run-time and design-time methods. In addition to handling event space matching, introspection could be useful
as a safety feature to insure that cooperating FSM understand each other.

3.6.2 COMPUTATIONAL MODEL

A general computational model exists for characterizing all OMAC control modules. Figure 14 illustrates the general
computational model. Each OMAC module can support levels of nesting FSM as part of general computational model. The
OMAC API module may also have one or more FSM simultaneously executing on a dominion FSM list. Each FSM on the
dominion list is conceptually equivalent to a concurrent thread of state logic. FSM on the dominion list can operate
independently or have dependencies between them.

ADMINISTRATION

MODULE

FSM STATE

QUEUE

FSM STATE

...

DOMINION

NESTING

EVENT CONTROL PLAN UNITor

FSM

FSM

FSM

FSM

Figure 14: Module Computational Paradigm

Within the FSM paradigm, different OMAC API modules have different FSM dominion list sizes. In general, the OMAC
modules exhibit the following computational model characteristics. The Discrete Logic module generally has a multi-item
dominion FSM list analogous to a scan list, (some active, some not active), to coordinate IO points. The Axis Group has a
multi-item dominion list, one or more motion FSM and none, one, or more Process FSM. The Axis module has one FSM
derived from the OMAC Base Class and an embedded FSM to support Axis functionality.

In the general computational model, FSM are used for controlling behavior and also serve as data. When events are sent
from the client to the server and contain FSM as data, the FSM data is called a ControlPlanUnit  (CPU). A ControlPlanUnit is
an FSM, but the internal representation is not important to the OMAC API. Instead, a CPU is defined with a simple state
management API hiding messy FSM details. The following is a sketch of the ControlPlanUnit API.

interface ControlPlanUnit
{ // Option 1:
  ControlPlanUnit executeUnit();    // return next ControlPlanUnit
  // Option 2:
  // boolean isDone();              // state query
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  // ControlPlanUnit getNextUnit(); // actually fetch next CPU when done
  void setActive();                 // set when “executing”
  void setInactive();
  boolean isActive();            // for HMI to determine when active
  // ... methods for persistence data in binary or neutral format
  // ... methods for graph representation for navigation purposes,
  //     such as when performing lookahead
};

The general computational model supports a mechanism to queue client requests - either events or CPU. A CPU received by a
server is queued and is eventually inserted into the dominion list. Three types of CPU can exist on the dominion list:

Transient  CPUs perform a fixed amount of work within a certain period. Transient CPUs execute cyclically and are removed
from the dominion list when an internal condition is satisfied. An example of a transient CPUs is a motion segment CPU that
has a beginning and an end. When the CPU isDone()  returns true, the CPU is removed from the dominion list.

Resident Cyclic CPUs execute “forever” and perform a function periodically. Resident cyclic CPUs execute repeatedly with
no internal completion condition. One example of a resident cyclic CPU is a PLC operation to turn the oil/slides pump on/off
every five minutes.

Resident Event-driven CPUs execute once when an event triggers their execution. An example of a Resident Event-driven
CPU is turning an IO point on or off.

The ability to have multiple CPU executing concurrently can be especially useful for Process Model enhancement. Within the
Axis Group for example, one can have a transient CPU for motion as well as a resident cyclic CPU to handle data logging.

Equivalent application functionality can be achieved with different distributions of CPU within a controller. Depending on the
circumstances, tight coupling or loose coupling can be used to coordinate logic and motion. Tight coupling is achieved by
placing RESIDENT FSM on the dominion list. Loose coupling is achieved by placing RESIDENT FSM in a separate thread
under same scheduler for all the other OMAC modules (which are resident FSM.)

Figure 15: Example Loose Coupling Probe Architecture

As an example, consider the integration of a Probe with an Axis Group to modify motion control. Several ways exist for
incorporating the Probe CPU into the system.

• The Probe CPU is placed in the Discrete Logic module to be run at a given period. The probe could running at the
same period as the Axis Group or be oversampled. This is an example of loose coupling.

• The probe could run as standalone resident CPU scheduled like any other OMAC module. The probe CPU could run
at a slower, faster or the same frequency as the Axis Group. This is an example of loose coupling and is illustrated
in Figure 15.

• The Probe could be a Process Model resident CPU that runs inside of the Axis Group at the same frequency as the
Axis Group. This is an example of tight coupling and is illustrated in Figure 16.
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Figure 16: Example Tight Coupling Probe Architecture

3.6.2 Control Plan Unit  Abstractions

The CPU is the base class, but the OMAC API defines several uses and specializations. Figure 17 illustrates the
ControlPlanUnits hierarchy of possible ControlPlanUnit specializations. CPU specialization is the mechanism to add
extensions. For example, the NURB MotionSegment is derived from the MotionSegment CPU. Specialization of CPU
include:

 Capabilities
correspond to different machine modes (manual, auto). When the Capability FSM is in the READY state, the Capability
can descend into a lower FSM or ControlPlanUnit. For example, once in the auto Capability FSM, a lower level FSM for
the “cycle” ControlPlanUnit can be used to sequence through a series of ControlPlanUnits.

MotionSegments
corresponds to the FSM input for an Axis Group module. In addition to the FSM directive and parameter methods, a
MotionSegment includes such information as rate, geometry, and a reference to a velocity profile generator that are
necessary for trajectory planning.

DiscreteLogicUnits
corresponds to the FSM input for a Discrete Logic module. DiscreteLogicUnits coordinate and control an aggregation of
IO points. In addition to the FSM directive and parameter methods, a DiscreteLogicUnit contains the information
necessary to either define asynchronous logic - the event or condition trigger, or to define synchronous logic - the scan
rate and FSM.

ProgramLogic
CPU for decision making, (e.g., statement, loops, end program and if/then/else).

forward/reverse

Axis Group Kinematics

write

update

Process
CPU

Probe

IO
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Control
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Discrete
Logic Unit

Program
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Joy

Stick Line Arc Nurb Mist Coolant Tool if then endif while

Figure 17: Examples of Different Types of Control Plan Units

A ControlPlanUnit  is responsible for its own branching. For this reason, the method executeUnit()  returns a
reference to the next ControlPlanUnit. A ControlPlanUnit  may embed other ControlPlanUnits . A series of
ControlPlanUnit(s)  is a ControlPlan . A ControlPlan  can be a simple list to represent sequential behavior
or a complex tree. Figure 18 illustrates some possible connections of ControlPlanUnits. Through the use of ProgramLogic
CPU, one can achieve a mapping from computer programming control constructs into a list representation.

To coordinate the ControlPlan (which is a graph of ControlPlanUnits) for outside observers (such as the Human Machine
Interface), there is a central ControlPlan header. The ControlPlan header monitors navigation through the graph as
ControlPlanUnit are activated and deactivated. As activity in the ControlPlan occurs, the ControlPlan header points to active
ControlPlanUnits. Traversal methods are defined within a ControlPlanUnit so that external modules, such as the HMI, can
monitor progress of ControlPlan via the isActive()  method.
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Figure 18: Control Plan built from Series of Control Plan Units
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3.6.3 CONTROL PLAN UNIT NESTING

A ControlPlanUnit  can contain other ControlPlanUnits. When activated, a CPU can send embedded CPU to lower
level servers. Thus, CPUs contain “intelligence” and understand how to coordinate and sequence the lower level logic and
motion modules.

upda te (A xis  G roup )

in it ia lize
d

loaded

started

execu te

execu te (T ask C oo rd ina to r)

s tart(A xis G roup )

upda te (A xisG roup
)

done

done (se lf )

in it ia lize (C on tro lP lanG en era to r)

Figure 19: Example Control Plan State Transitions

Figure 19 illustrates an example of the relationship between a CPU, its states, and its travel through a control system. In this
example, a ControlPlanGenerator, such as one for RS247D or IEC1131, initially generates Control Plans from part programs
most likely using a CPU constructor. During execution of a Control Plan, the CPU is becomes the next active CPU in the Task
Coordinator. The Task Coordinator does an executeUnit  on this CPU. The CPU determines if it can append an
embedded Motion Segment CPU onto the Axis Group motion queue. If for example, a tool change is desired, then assume the
CPU should wait until all current motion must be completed first. This requires the CPU do synchronize with lower level
modules. The synchronization would occur inside the CPU and could be done with or without blocking. The code for a
blocking CPU would look like this:

         CPU execute_unit()
         { axgrp->wait_for_motion_idle();  // blocks until this is true
           axgrp->setNextMotionSegment(moveToToolChangerMS);
         // pass change tool CPU to discrete logic
          return nextCPU;
         }

The code for a non-blocking CPU would look like this and assumes that the Task Coordinator periodically performs an
executeUnit  on the CPU.

       CPU executeUnit()
         { if(!axgrp->isIdle())  return this;
           axgrp->setNextMotionSegment(moveToToolChangerMS);
         // pass change tool CPU to discrete logic
         return nextCPU;
         }

Once the CPU is free to continue, embedded CPU(s) are passed to subordinate modules and loaded onto their event queues.
That is, the CPU running in the Task Coordinator passes the next Motion Segment CPU to the Axis Group module and passes
a Tool Change Discrete Logic Unit to the Discrete Logic module.
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Once the Motion Segment CPU is loaded onto the Axis Group queue, it waits for activation. Activation can occur if the CPU
is first on the queue and no CPU are on the dominion list running, or the previous CPU already running on the dominion list
returns a true to startNextCPU() .

If ready for activation, the Axis Group moves the MotionSegment method from the motion queue to the dominion list and
calls start , which places the CPU in the started  state. Herein, the MotionSegment is in the executing  state and the
Axis Group periodically calls the Motion Segment CPU update()  method until the isDone()  condition is true.

The transition from executing  to done  does not result from an externally-generated event, but rather is achieved by the
CPU satisfying an internal termination condition (hence the reference to self ).

Figure 20 illustrates the propagation of CPU through a controller. The Control Plan Generator generates a top-level
ControlPlanUnit CPU1 for the Task Coordinator. CPU1 contains embedded MotionSegment CPU MotionSegment a and
DiscreteLogicUnit CPU DiscreteLogicUnitCPU b. Consider the coordination required for a tool change. The top-level
CPU1 forwards CPU1b or DiscreteLogicUnitCPU b to the DiscreteLogic module to be placed on its scanning list. For
simplicity, assume the top-level CPU waits until the DiscreteLogic reports that it is done with the tool change. Once the tool
change motion is completed, the top-level CPU1 can then forward CPU1a or MotionSegment a to the AxisGroup.

It is important to understand the nesting of CPU and subsequent propagation of CPU. It is the fundamental
mechanism for passing data through an OMAC API controller.
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Control Plan Unit

Control Plan Unit

Control Plan Unit
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(Motion Segmenta)

(Discrete Logic Unitb)

Figure 20: Intelligent CPU Spawning Lower Level CPU

Figure 21 is an Object Interaction Diagram for the following propagation scenario. Assume a Human Machine Interface will
set the current Capability to Auto  mode. Then, the HMI interacts with the Auto Capability to load a program name and then
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start the cycle. This will cause the Task Coordinator to request the Control Plan Generator to translate the part program into a
Control Plan. Once translated, CPU1 will be executed via the executeUnit  method. While CPU1 is executing, it will
forward two new Control Plan Units - first a Discrete Logic Unit dlu b to perform a tool change and afterwards a Motion
Segment ms1. When it's time, the scheduler or updater will cause the DiscreteLogic module to execute. The DiscreteLogic
module will then process its scan list and in turn execute dlu b. When the dlu b tool change isDone , CPU1 will forward
Motion Segment msa. At the appropriate time, the scheduler or updater will cause the AxisGroup to execute and it will start
processing msa.

Scheduler
Updater HMI

Task
Coordinat
or

Auto
Capability
CPU

Control
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Generator CPU1
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Group

Discrete
Logic

SetCurrentCapab
ilty (auto)
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(actualpos,
 processCPU)
...
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Figure 21: Embedded CPU Forwarding Object Interaction Diagram

The OMAC API specifies that ControlPlanUnit  objects can embed module references and direct method calls. On the
surface, this approach appears implausible. However, because of proxy agent technology, it is not hard to create a “forward
reference” assuming one can dynamically bind to an object. This dynamic binding is beneficial since it eliminates static
encoding of methods (e.g., with id numbers) necessary for methods to execute across domains (i.e., address spaces). To
enable forward references, the requirement does exist for the infrastructure to support some “lookup() ” method to map
object names to addresses. Consider the following C++ code to handle generic Axis Group control within the Task
Coordinator.

class G0CPU : ControlPlanUnit
{
  void setMotionSegment(MotionSegment _msA);  // parameters set by the CPG

  setAxisGroup(char * axgroupname) { ag=lookup(axgroupname); }
  setAxisGroup(AxisGroup * axgrp)  { ag=axgrp; }
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  CPU executeUnit()
  {
    if(!firstTime++)
        ag->setNextMotionSegment(msA);      // message passing!
    if(!ag->isDone()) return this;         // not done
    else return NULL;                       // return NULL or done CPU
  }

  private:
    MotionSegment msA;
    long firstTime;
};

In the example, a ControlPlanGenerator will create a G0CPU that contains a MotionSegment (i.e., msA). When the
TaskCoordinator is executing the G0 CPU , the executeUnit  method uses explicit calls to an Axis
Group object, (i.e. ag). In early binding, a “forward reference” must be fulfilled by the ControlPlanGenerator to the Axis
Group object is required. In late binding, the TaskCoordinator could do the lookup of the AxisGroup reference. However, late
binding can unnecessarily slow down the “block throughput” of CPU, hence only early binding will be considered.

To achieve early binding, suppose the Control Plan Generator (CPG) constructor receives the name “axisgroup1” for an Axis
Group object. The CPG can lookup the object “axisgroup1” to retrieve a reference address. Upon receiving a reference
address to “axisgroup1,” the CPG passes this reference address to a CPU, in this example, with the method
setAxisGroup .

The degree of difficulty to do a reference address lookup depends on the execution environment. For modules running as one
or more threads in a process, the reference address is trivial. For reference addresses that cross domain boundaries, proxy
agent technology is required. Proxy agents must encode reference addresses with a more sophisticated scheme to capture the
domain (e.g., machine, process) and encode the object reference and the methods. Proxy agent technology should hide the
reference address encoding from the programmer.

3.7 DATA REPRESENTATION

Exchange of information between modules relies on standard information representation. Such control domain information
includes units, measures, data structures, geometry, kinematics, as well as the framework component technology. OMAC API
has chosen two levels of compliance for data definitions.

The first level defines named data types to allow type-checking. The OMAC API uses the IDL primitive data types and builds
on these data types to develop the foundation classes and framework components. For control domain data modeling, the
OMAC API used data representations found in STEP Part Models for geometry and kinematics [Inta, Intb]. Internally, any
desired representation could be used. The STEP data representations were translated from EXPRESS[EXP] into IDL.
Representation units are assumed to be in International System of Units, universally abbreviated SI. Below is the basic set of
data types, which use STEP terminology for data names but reference other terms for clarification.

Primitive Data

• IDL data types include constants, basic data types (float, double, unsigned long, short, char, boolean,
octet, any), constructed types (struct, union and enum), arrays and template types bounded or
unbounded sequence and string.

• IEC 1131 types - 64 bit numbers

• bounded string

Time

Length

• Plane angle

• Translation commonly referred to as position

• Roll Pitch Yaw (RPY) commonly referred to as orientation

• STEP notion of a Transform which is composed of a translation + rpy, also commonly referred to as a
“pose.”
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• Coordinate Frame which is defined as a Homogeneous Matrix

Dynamics

• Linear Velocity, Acceleration, Jerk

• Angular Velocity, Acceleration, Jerk

• Force

• Mass

• Moment

• Moment of Inertia

• Voltage, Current, Resistance

The second level provides for more data semantics. The OMAC API adopted the following strategy to handle data typing,
measurement units, and permissible value ranges. Distinct data representations were defined for specific data types. For
example, the following types were defined in IDL to handle linear velocity.

// Information Model - for illustrative purposes
typedef Magnitude double;

// Declaration
interface LinearVelocity : Units  {

        Magnitude  value; // should this value be used?
        // Upperbound and Lowerbound, both zero ignore
        Magnitude ub, lb; // which may be ignored

        disabled();
        enabled();
};

// Application
LinearVelocity vel;

In this case, linear velocity is a special class. Unit representation is inherited from a general unit's model. Permissible values
are defined as a range from lowerbound to upperbound. The units and range information are optional and may not be used by
the application.

Another data typing problem that must be resolved concerns the use of a parameter. Not all parameters are required or set by
every algorithm. For example, setting the jerk limit may not be necessary for many control algorithms. It was decided to use a
special value to flag a parameter as “not-in-use”. This approach seems simpler than having a useXXX type method for each
parameter. For now, OMAC API has decided that setting a parameter to an unrealistic “Not in use Number” (but not actually
“Not a Number”)  value - such as MAXDOUBLE or 1.79769313486231570e+308 - renders a double  parameter to be
ignored or not-in-use. A similar number would be required for an integer. This works for level 1 and level 2. Within level 2,
the methods enable  and disable  were added to explicitly indicate use of a parameter.
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4 MODULE OVERVIEW

4.1 TASK COORDINATOR

The general characteristics of the Task Coordinator module include:

• act as central point for coordination

• initiate startup and shutdown since it understands the controller configuration - what modules are in the
system and how to start up the modules

• act as the highest level Finite State Machine within the controller.

• change frequently. The leaf nodes in the OMAC API architecture will be most stable. As such, each
system change should not require an entire rewrite of the TC. Instead, TC should be flexible to
accommodate change.
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Figure 22: Task Coordinator Computational Model

The Task Coordinator module is an FSM. The Task Coordinator FSM functionality is defined by ControlPlanUnits, called a
Capability , that are received from clients. The Task Coordinator has a one-element FSM dominion list to manage these
Capabilities. The Capability  class supports stop, start, execute, and isDone  methods.
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For an application controller, there is list of capabilities that a Task Coordinator can use. Figure 22 illustrates a CNC
application with Capability  instances. When a Capability  is executing, it coordinates the servicing of requests
from the HMI. When the Auto Capability  FSM is executing, it interacts with the Control Plan Generator.

Operator HMI Task
Coordinator

Manual
Capability
CPU

Auto
Capability
CPU

POWERUP
setCurrentCapbilit y(manual)

start()

PUSH AUTO
setCurrentCapability(auto)

stop()

start()

LOAD PROGRAM
setProgramName(file)

execute()
... nothing to do yet

PUSH CYCLE
startCycle()

execute()

Translate
part program into
Control Plan

execute()
Run
Control Plan

Figure 23: Task Coordinator and Capability Object Interaction Diagram

Figure 23 illustrates a sequence of operations that takes a milling CNC from manual mode to automatic mode. The diagram
shows the use of Capability  start, stop, and execute  FSM methods. In the scenario, the controller comes
up in the manual  mode as loaded by the HMI at startup. Then, the operator pushes the auto  button that causes the HMI to
execute the Manual Capability stop  method, and load the Auto Capability  onto the Task Coordinator
queue. That cycle, the Task Coordinator will see that the Manual Capability  boolean isDone  is True and will swap
the Auto Capability  FSM into the dominion FSM list. The operator action to Load Program will result in a program
name loaded into the Control Plan Generator. When the operator pushes the cycle start button, it will cause the Auto
Capability  FSM to translate a part program and then start sequencing a ControlPlan generated by the Control Plan
Generator.
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4.2 DISCRETE LOGIC
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Figure 24: Discrete Logic Computational Model

The Discrete Logic module is similar to the Task Coordinator module in that it sequences and coordinates actions through
dominion FSM. However, instead of a one-element dominion FSM, the Discrete Logic module has a multi-item dominion
FSM list that is analogous to a scan list. In general, a Discrete Logic FSM could be coded in any of IEC-1131 languages and
translated into ControlPlanUnits. Figure 24 illustrates the types of FSM that may be found on the Discrete Logic dominion list
for a typical CNC milling application. An FSM to handle IO scanning would be expected. An FSM implemented as a Ladder
Rung could be expected to handle a relay for turning a Mist pump on. Below is a sketch of the activity for turning the IO mist
pump on.

mistPumpOnRung()
execute()
{ logic:  trigger relay to turn pump on
          wait till IO/pt says pump is on
          IOmist<- on;
}

At a higher level, a hardware-independent Mist FSM would be required to coordinate turning Mist on  and off . Below is a
sketch of pseudo code to sequence the Mist on  operation. For coordination between FSM logic, polling or event-drive
alternatives exist to wait for the IO Mist on activity to complete.

mistOnFsm()
{ “MistOn LR IO <- on” to turn LR=ladder rung on
  “subscribe to event that IO Mist On ==on”
  “wait for event or poll for IO point for Mist On == on “
  “done - deactivate FSM for scanning”
}



 THE OMAC API  SET WORKING DOCUMENT

  VERSION 0.18

 2/26/98 34

4.3 AXIS

Axis module contains classes encapsulating the features pertaining to a single axis in a multi-axis control system. Figure 25a
diagrams the relationship of the various classes. Classes are defined to provide a variety of setpoint control (e.g., following
AxisPositionServo, AxisVelocityServo, AxisAccelerationServo, AxisForceServo ),
actions (e.g., AxisHoming, AxisJogging ) and data (e.g., AxisCommandedOutput, AxisRates,
AxisLimits, AxisSensedState ). Figure 22b diagrams the finite state model of execution.
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Figure 25a: Axis Class Diagram

The following list itemizes some basic open architecture requirements the axis module must support:

• nested control loops (e.g. position and velocity) using either derived feedback or additional sensors (e.g.
encoders and tachometers)

• perform backlash compensation

• ability to incorporate any appropriate sensors and actuators available in the system

• provide settable error limits and “clamping” of various quantities in the loop. If error limits are exceeded,
the loop will “safe”  itself, and inform of an error condition.
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Figure 25b: Axis Module State Diagram

Within the Axis module definition, several issues exist.

One issue that occurs is mapping a single axis to multiple actuators. At this time, actuators are not an OMAC API module.
The current resolution to the single axis-multiple actuator problem is to define specializations of the Axis base class to handle
the multiple actuators.

Another issue is exposing the FSM methods. The reason for exposing the FSM methods is so that such FSM classes (such as
AxisAccelerationServo) can be a replaceable component within the system. Different implementations of the class definition
would adhere to the interface.

Another issue is what happens when a method is invoked in the wrong state? For example, suppose an ACCEL_EVENT
occurs when in the HOMING state and there is no defined transition? The first possible action is to ignore the event, but this
is poor system design. The preferable option is to throw an exception, but OMAC API has not enumerated exceptions yet.

Another issue is how is a Control Law attached to a servo class such as Position, Velocity, Acceleration, or Force? The
answer is to use class specialization to extend the base class to contain Control Law component. For example,
AxisAccelerationServo  may not need a control law component if connected to SERCOS drive so that it uses the
specified Base Class:

interface AxisAccelerationServo(){}

For software servoing, an Axis class specialization would be defined that incorporates a control law component using a
Derived Class:

 interface CLAxisAccelerationServo() : AxisAccelerationServo
{ ControlLaw controllaw;
};
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4.4 AXIS GROUP

The Axis Group module is responsible for transforming an incoming MotionSegment into a sequence of equi-time-spaced
setpoints, incorporating mechanism and process knowledge, and coordinating the motions of individual axes.
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Figure 26: Axis Group Module

Figure 27 shows the class diagram for the Axis Group module. The Axis Group module consists of the following classes:

AxisGroup
is the coordination module that has the following responsibilities:

• kinematics coordination transformation

• dynamic offset (e.g. sensing inputs) and overrides

• multi-axis coordination

• blending and block look-ahead

• feedhold

• operation stop

• execution on compensation look-up tables

• path or rate-control modification based on sensor-feedback (including operator overrides)

PathElement is the class definition to define the motion geometry.

Rate is the class definition to define the motion rates and limits along a path.

VelocityProfileGenerator is generates time-based steps along a path. Time-scaling of motions is performed along a path
based on rate-control (desired velocities, accelerations) or time-duration. Includes control of acceleration/deceleration.

MotionSegment is derived from ControlPlanUnit to define a motion-control FSM. Contains references to
VelocityProfileGenerator, PathElement and Rate classes.

Figure 26 illustrates AxisGroup computational model. The AxisGroup receives MotionSegment CPUs that define the motion.
MotionSegments are queued to allow blending or lookahead. Process CPUs are required for integrating sensing and
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mechanism knowledge. Process CPUs have tightly-coupled associations with the Kinematics Module (for mechanism
knowledge) and the Process Model (for sensing and application specific knowledge).

The Kinematics module describes the relationship of the machine and part to a world coordinate system. Such information
could include a relative offset to the machining bed and another offset to a part origin. Obstacles such as fixtures would also
be included within this description. The Process Model integrates operator and sensor feedback into the trajectory motion.
This feedback can be used to modify the rate-control.

 

Axis Group Motion Segment  

OMAC Module ControlPlanUnit

queue
n

Rates VelocityProfile
Generator

Path Element

AccDec
Profile

KinMechanism 1

1
1 1

1

Process  Model 
(CPU )

1

Figure 27: Axis Group Class Diagram

Discussion on some issues and procedures common to Axis Group operation follows.

Concerning the issue of power management, it is assumed to be user-specifiable by the ControlPlanUnit within some timing
constraint. For example, a sequence to set a bit, wait 3 seconds and then check brakes can be embodied with a
ControlPlanUnit.

A common Axis Group procedure is to stop running, change a broken tool and then resume operation. For this Axis Group
module has API to save motion queue context and then restore it. An underlying assumption is that if there are other queues
internal to the Axis Group (e.g., lookahead, blending) that these too will be saved and restored.

The issue of standard stopping procedures is fundamental to a standard Axis Group API. OMAC API proposes three modes to
stop:

hard stop is a stop with max deceleration rate. Also called abort.

pause is a stop on the path as defined by the KinematicPath in the MotionSegment.

hold is a stop at end of segment as defined as the next increment provided by the Velocity Profile Generator.

There are four recovery modes from stop:

resume start motion from the current point

skip skips to the next segment
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flush  flushes all segments on the motion queue

restore after a motion queue save after stopping, with possible intervening motions (such as to change a broken tool
or backing out), the motion queue can have its previous context restored.

A standard Axis Group estop  is not addressed because of the many different interpretations of estop. For most purposes, a
hard stop and estop are identical.

An issue of axis grouping and creating higher level objects can be resolved by defining a higher level AxisGroup module.
Some grouping issues include:

• error grouping - the AxisGroup has an inhibit()  API for error recovery (e.g., 2 live axis with 3 dead
axis)

• power sequencing - TBD

• power chain grouping - TBD

• kinematic grouping is done with the Kinematics module.

4.5 PROCESS MODEL

The Process Model is responsible for dynamic control modifications. The Process Model exists to encapsulate the application-
or domain-dependent knowledge. For example, the Process Model for machining would incorporate feedrate override, but the
Process Model for a pick-and-place robot would probably not. Some typical Process Model dynamic modifications associated
with machining include:

• feedrate override

• spindle speed override

• path offset (normal adjustment for cutter compensation)

• tool length offset (dynamically modified based on tool wear, not just tool change)

• data logging flag

• cycle interruptions (e.g., estop, hard stop, feed hold)

The Process Model is generally associated with the Axis Group in order to modify the current motion. The relationship
between the Process Model, Axis Group and MotionSegment modules can vary. This variation greatly affects the openness
flexibility.

In the dependent relationship, the Axis Group and the Process Model know each other's API a priori. For example, suppose
the Axis Group understands that the Process Model supports feedrate override via a getFeedrateOverride()  API.
Then, the Axis Group can retrieve the current feedrate override value in order to modify the current MotionSegment's
feedrate.

The dependent relationship is flexible if all the required shared variables between the Axis Group and the Process Model
exist. For example, if the feedrate override had been under operator-control, a user may replace the Process Model with a
custom module to change the feedrate override based on some force/torque sensing. However, problems arise if the user
wants to add a cutter compensation normal to a MotionSegment and a pre-defined API does not exist. Now, the Axis Group or
each MotionSegment must be rewritten to incorporate this modification.

In an independent relationship, the Axis Group and Process Model coexist without a priori knowledge of each other. For this
case, OMAC API is proposing to allow the Process Model to send CPU to Axes Group so that these CPU can modify the
current motion CPU (i.e., MotionSegment). Consider the following alternatives where the user wants to integrate a new probe
into the control system and coordinate when the motion controller to start recording points.

1. For the dependent relationship, a solution is to rewrite the Axis Group to accept a “log data” flag and then
record data.

2. Another possibility is to mandate that every control plan be rewritten to contain a “log flag.”

3. In the proposed independent relationship, the Process Model would generate a CPU that is sent to the Axes
Group which is executed every cycle to actually log data based on an external reference to a “log flag.”
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In the independent relationship, countless other real-time modifications could be applied by ControlPlanUnits within the
AxisGroup (as well as the Kinematics Module). The ability to extend the controller based on evolving sensor-based
applications was a primary OMAC requirement. Hence, the necessity to support the Process Model independent relationship.

4.6 KINEMATICS

Kinematics refers to all the geometrical and time-based properties of motion[Cra86]. The OMAC API uses a graph
representation to model the geometrical aspect of kinematics. The model is flexible enough to handle kinematic chains and
kinematic hierarchies. Figure 25 illustrates the terminology used to model the geometric kinematics. A KinStructure
describes the geometry of an axis link. A KinStructure has a Base Frame (generally used to model compensation) and a
Placement Frame to model the axis link transformation. The BaseFrame is useful as an offset to model spindle growth or
other compensation variables. When no compensation is planned, the BaseFrame location equals the placement frame
location. A Connection models the relationship between two KinStructures using a from  KinStructure and a to KinStructure.
A KinMechanism models a kinematic chain as a series of connections. The OMAC API kinematic model allows recursive
kinematic definition. A KinStructure can itself be a kinematic chain modeled as a KinMechanism. This recursive definition
allows a static kinematic chain to collapse into a single pre-computation.

 

K2
KinMechanism

KinMechanism

baseFrame baseFrame placementFrameplacementFrame

Connection

K1•K2

KinMechanism

K3
KinMechanism

baseFrame placementFrame

K1•K2
KinMechanism

baseFrame placementFrame

KinStructure

KinStructure

KinStructure KinStructure

Figure 28: Kinematics Model

A KinMechanism is responsible for computing the forward and inverse kinematics. A KinStructure contains the following
information necessary for these calculations:

• transform

• static or dynamic link

• home state

• link model - translational, prismatic, rotational
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Figure 29: Kinematics Example

As an example, consider the case of a three axis machine with tool to mill parts on a table given a part offset. The machine
tool kinematic chain contains a spindle KinMechanism to model spindle growth. Figure 29 illustrates the chain of
KinStructures World, Table, Part, Goal Pt, a1, a2, a3, spindle, and tool  to model this
example. We will assume the table is motionless.

The following code sketches an OMAC API kinematic model for this example.

// Declarations
KinMechanism worldKM, axKM[3], spindleKM, toolKM;
KinMechanism  overallKM;                // collection w-a1-a2-a3-spindle-tool kinematic chain
KinStructure * worldKS, * axKS[3], * spindleKS, * toolKS;
Transform Identity = new Transform (1, 0 , 0, 0, 0 , 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);

// Define KinStructures and embed in KinMechanism
  worldKS= new KinStructure();
  worldKS->setBaseFrame(&Identity);
  worldKS->setPlacementFrame(&Identity);
  worldKM.setConnections(NULL); // trivial case, does not contain KinMechanisms
  worldKM.setKinMechanisms(NULL); // trivial case
  worldKM.setKinStructure(worldKS);

  axKS[0]= new KinStructure();
  axKS[0]->setBaseFrame(&Identity);
  axKS[0]->setPlacement(/*some transform*/);
  axKM[0].setConnections(NULL);
  axKM[0].setKinMechanism(NULL);
  axKM[0].setKinStructure(axKS[1]);
  ...

// Set connections
  Connection c[5]
  Connections connections;
  c[0] = setFrom(w);
  c[0] = setTo(axKM[0]);
  c[1] = setFrom(axKM[0]);
  c[1] = setTo(axKM[1]);
  c[2] = setFrom(axKM[1]);
  c[2] = setTo(axKM[2]);
  for(int i=0; i< 5; i++) connections.add(c[i]);

//Define overall KinMechanism
  overallKM.setConnections(connections);

// Modification of axis values
  axKM[0]->getKinStructure()->setPlacementFrame(&newFrame1);
  axKM[1]->getKinStructure()->setPlacementFrame(&newFrame2);
  axKM[2]->getKinStructure()->setPlacementFrame(&newFrame3);

The importance of the Kinematics module is not only calculating the forward and inverse solutions, but also providing a
mechanism to perform offsets and compensation. A few examples will be considered.
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Relative Positioning The equivalent to the RS274D Absolute and Relative positioning cases are handled by two separate
KinMechanisms.

Change Tool Suppose a tool table is to be maintained. A KinMechanism for each tool in the table will need to be defined. For
a tool change, a new reference to the new tool is substituted for the tool  KinMechanism in the overall  kinematic chain.

KinMechanisms tool[100];
   toolKM = &tool[2];

Tool Length Offset Consider the case in which tool length offset is changed to compensate for tool wear, reconditioning,
depth of cut (rough, finish), or dry run. In this case, the tool KinStructure PlacementFrame is modified to reflect the change.
For example, changing column 4 row 3 (i.e., the z value) of Tool displacement frame will change the offset.

toolKM->getKinstructure->setPlacementFrame(newFrame);

Spindle Growth A majority of variation during machining is attributable to spindle growth. The example kinematic chain
contained a Spindle KinMechanism to model spindle growth. Modifying the spindle BaseTransform based on spindle growth
achieves good correction at a modest cost.

        spindleKM->getKinstructure->setPlacementFrame(newFrame);

Axial Growth Consider the case in which an axis is growing in length as the leadscrew mounting bearings heat up during
machining. In this case, the axial member is growing in length. Next to the spindle, axis growth is the most common and cost-
effective compensation technique. In this case, an axis KinStructure baseFrame is changed.

        axKM[0]->getKinStructure()->setBaseFrame();

Cutter Radius Compensation Consider the scenario in which path modification is based on cutter radius compensation.
Assume the need to apply a normal offset to the pre-defined curvilinear kinematic path from point A to point B.

In the static case, the entire kinematic path can be recomputed as specified based on a flag. In this case, responsibility is
delegated to the CPU to handle the change from the nominal path to the compensated path.
In a quasi-static case, suppose the cutter radius is computed on-line by some process controller or sensor to do radial
compensation to adjust the path. In this case, a radial compensation value is input to the Kinematic Path class and it returns a
corrected value.

In the dynamic case, the modification is to the next increment of the interpolated path of the current MotionSegment. This
would be achieved by calling the KinematicPath (i.e., KP) with the normal offset.

        KP->applyNormalOffset(&normalOffset);

Configuration Solution rules for configuration such as up/down elbow or redundant links are handled by class
specializations.

Update Unresolved is the responsible module and mechanism used to update dynamic (e.g., axis) values.

4.7 IO SYSTEM

The purpose of the IO system is to provide a uniform interface to Physical or Virtual  input or output points in the system.
The IOPoint  class defines the uniform interface and hides the details of the underlying hardware interactions. An example
of an IO Point is a DAC on a multiple DAC digital to analog output card. The IOPoint  base class manages a single value,
and provides an interface for reading and writing that value. The IO Point base class contains readValue()  and
writeValue()  methods.

Each IOPoint  may be accessed individually but IOPoints  are controlled by an IO System. An IO System is a module
consisting of one or more IO Points, grouped together because they share some resource (either hardware or software). There
can be many IO systems in a controller (e.g., Sercos, D/A board, etc.)
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4.7.1 IO NOTIFICATION

Each IO System may optionally contain Callback Notification and Callback Handlers.

Callback Notification object(s) provide a mechanism for other modules to be informed when some internal activity has taken
place in the IO System. Each Callback Notification object contains a list of Callback Handlers to be activated on the desired
event. This allows multiple modules to be informed on an IO System state change. The Callback Handlers are entered into the
Callback Notification object's list at system integration time. For example, a Callback Notification might exist to inform other
modules when the values associated with an IO System's IO Points have changed.

The IO System may also by notified by Callback Handlers. A callback by other modules would inform the IO System that
some event has occurred. For example, the IO System may contain a Callback Handler to be activated when it is time to
sample all of its IO Points' inputs.

4.7.2 IO CONFIGURATION

OMAC API uses a Presentation IO model in which each IO system (as one of many in the system) creates a series of
IOPoints  that other objects in the system access via references (or handles). This differs from an Attachment IO model,
where each object in the system creates an IOPoint  and attempts to attach the IOPoint  to some hardware.

As an analogy to differentiate between the Presentation and Attachment models, consider an IO Point filled with bytes from a
file. In the Attachment model one opens a file, and uses a copy of a device driver to read bytes from the file. To read bytes
within the Presentation Model, the assumption exists that a separately running IO System module has already opened the file
and has presented a byte IOPoint for system-wide access. In IOPoint presentation, any number of objects in the system can
access the byte IOPoint buffer, which is updated by its IO System.

The Presentation IO model assumes that an object uses an ASCII naming and lookup service to connect to an IOPoint .
This IOPoint connection is performed at configuration time. However, at this time the OMAC API does specify a
configuration API for IO Point connection.

4.7.3 IO CUSTOMIZATION

Clients of I/O modules may wish to customize their interaction. OMAC API has defined IOPoint  classes for the major
types (e.g., short, long, float, double ). THE FOLLOWING SECTION DISCUSSES ISSUES OF IO
CUSTOMIZATION, HOWEVER, IO CUSTOMIZATION IS NOT WITHIN THE SCOPE OF THE OMAC API
SPECIFICATION EFFORT.

Customized IOPoint classes can be derived based on specializations (such as a read-only IOPoint) as well as methods to
manipulate the value's units, name, type, and other properties. These methods may be further supplemented with additional IO
system-specific methods to configure IO waiting, synchronization, as well as low-level communication protocols.

IO mechanism Since IO Systems will probably represent a particular piece of hardware plugged into the system,
customization of the io mechanism is also desirable to provide non-generic, hardware specific interfaces. These
interfaces are referred to as Control Interfaces, and are somewhat analogous to the Unix ioctl()  function calls.
Unlike the other interfaces provided by the IO System, there is no fixed form for these interfaces. They exist to
provide access, by knowledgeable software modules, to low level hardware functions that cannot be put into the
generic forms used by the other interfaces. They would probably be used primarily by diagnostic software. Use of
these interfaces by other modules, which are intended to be generic, is not recommended, since their use would
prevent the module from using any other IO System that did not provide an identical interface.

IO Data Handling  Customization of data handling requires some special characteristics. For example, the IO
module tailors the service to offer different sampling strategies, transfer protocol and data age. The following is a
list of customized IO data and protocol characteristics:

Sampling Event IO system characteristic

• ON-DEMAND,

• ON-TRANSITION,
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• ON CLOCK

Data Age

• Sample Num

• Sample Num + N

• Current Reading

• Current Reading + N

Transfer Type

• Synchronous : wait until complete

• Synchronous : wait up to specific time

• Asynchronous : initiate and specify complete event handler

• Asynchronous : continuous with completion event handler

4.7.4 IO META DATA

A major issue with handling IO is the aspect of IO Meta data. IO Meta data correlates the IO to the device, for example,
“what board is this IO Pt associated?” IO meta data incorporates knowledge useful for maintenance and diagnostics. In many
ways, IO Meta data is the bigger part of IO. OMAC API has not specified a formal IO Meta data. OMAC supports the notion
of an IO registry  that would include such IO Meta knowledge as:

• IO as shared across the system

• IO as used by different clients

• IO as defined from a physical aggregation

• IO grouping for efficiency (e.g., an IO group is clustered on one board)

• physical device to logical IO mapping (e.g., a device has 4 analog inputs, 4 analog outputs, 16 discrete IO).

Overall, IO registry would consist of a container of devices as well as a container of IOPoints. Each IO point keeps a
reference to a device as well as a device specific set of data which is needed to access that IO point (e.g. which bit, how wide,
what type). This format information is retrieved at start-up and is returned in the form of a reference handle. This could allow
a configuration utility to build a GUI and supply the data, which is then stored in the registry.

Interaction with an IO registry is as follows. At configuration-time, IO registry functions include service to bind a device to
IO name (i.e., device maps into a board, point, type) and this builds the internal tables. At initialization, the IO registry return
handles for names for efficient access during execution. At runtime, IO has facilities for the read  and write  of grouped
outputs and single outputs; as well as the read  of grouped inputs and single inputs.

4.7.5 IO ISSUES

The OMAC API has not specified a solution to the issue of whether an IOPoint tells whether it is input or output.  A simple
resolution would have an IO derived type from IO_PT used by configuration for mode differentiation and type checking.

The OMAC API has not specified a solution to the issue of forcing IO and machine simulations through IO points.

4.8 CONTROL PLAN GENERATOR

The Control Plan Generator is responsible for reading and translating programs, which represent machine operation and
tooling. The Control Plan Generator can either translate the entire file or provide instructions a statement at a time. The
Application Programming Interface to the Control Plan Generator is not concerned with the format of the part program itself,
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but with syntax and translating program elements into Control Plan Units. Functionality of the Control Plan Generator
includes:

• reading existing program files, which contain statements in the format understood by the translator but not
standardized by the OMAC API

• translating part program statements into ControlPlanUnits

• correlating source knowledge about a program, (e.g., current line number, active statement) with a
ControlPlanUnit.

 

 

valid?

Control Plan
Generator

CPU Table

Control Plan

syntax check

lookup(1..n)

generate(1..m)

Figure 30: Control Plan Generator

Figure 30 presents an overview of the Control Plan Generator. The Control Plan Generator is responsible for syntax checking
of the part program. If the syntax is valid, the Control Plan Generator generates one or more Control Plan Units for each line
of the part program. The Control Plan Generator is responsible for correlating part program source information (such as line
numbers) with each ControlPlanUnits. Multiple source lines may be active with one ControlPlanUnit.

Table lookup to translate a part program statement into a ControlPlanUnit can be done in a number of ways. OMAC API does
not specify a standard lookup technique. One option to perform this lookup would be to associate each part program statement
with a separate translation object that queries or is given the knowledge it requires. Each translation object would support an
identical translate()  interface. Another possibility is to use “flat” canonical functions instead of “object-oriented”
translation classes. Any number of indexing or bidding schemes is also possible.

It would be desirable for Control Plan Generators to generate generic machine-independent Control Plans. Then, translation
from generic ControlPlan Unit to a machine specific ControlPlanUnit could be done based on the specific objects in the
system. For Control Plan machine-independence, adding a machine profile (e.g., 3-axis versus 5-axis) and a Control Plan
should produce identical results. Concerning the issue of part program portability, OMAC API does not expect the
ControlPlanGenerator to produce a machine-independent ControlPlan. This flexibility is difficult to attain and the OMAC API
determined that defining a Neutral Language Definition was outside the scope of the current effort.
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4.9 HUMAN MACHINE INTERFACE
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Figure 31: MVC Design Pattern

The Human Machine Interface is responsible for the connection between the controller and a human-monitoring subsystem.
The object-oriented design pattern called the model-view-controller (MVC)  will be used as the HMI reference model
[GHJV94]. Figure 31 shows the relationship of the different control and human aspects within the MVC pattern. The MVC
model “M” defines the state of the HMI objects. The MVC View “V” corresponds to the front-end or visual presentation with
which the user interacts. The MVC controller  “C” is not the same as the motion controller, but refers to an object that
controls a View object in such a way that it responds to user input and delivers output.

Some clarifying objectives concerning the OMAC API HMI are in order. The goal of the OMAC API is to define an HMI
specification that is independent of the visualization medium (i.e., V), the data entry mechanism, the operating system, or the
programming language. The primary OMAC API objective is to specify a technology-neutral data and event model (i.e., M)
for exchange of information between the Human subsystem and the Application Controller. The OMAC API would like to
encourage the bundling of a control component with an HMI viewing component (i.e., supply component plus V & C). The
OMAC API is not concerned with the “look and feel” of a HMI. The “look and feel” of an HMI is generally application-
specific.

To understand the HMI for OMAC API, the elements M,V, and C will each be reviewed.

Model

The primary emphasis of the OMAC API is to define a model “M” API that allows the exchange of data and events. The
traditional standardization effort for “M” relates to the data collection or back end that would be defined as a
Dynamically (or Shared) Linked Library.

The desired HMI “M” functionality is best understood in the context of simple problems. Three canonical “M” problems
exist that an HMI module must be able to handle. First, the HMI must have the capability for solicited information
reports about the state of the controller, such as current axes position. Second, the user must have command
capabilities such as the ability to set manual mode, select an axis, and then jog an axis. Third, the user must be alerted
when an exception arises, in other words, handle unsolicited information reports.
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Figure 32: HMI “M” Mirrors Controller

For “M” functionality, OMAC API specifies that every controller object has a corresponding HMI object “mirror”.
Figure 32 illustrates an “M” that mirrors an application controller where each mirror object in the HMI has a reference to
its companion object in the controller. The mirror object can then use the reference to get/set data, or to invoke methods
to initiate events. In other words, these HMI and controller objects have identical interfaces for data manipulation and
event-initiation. For event-notification (unsolicited reports), this is a special problem that really has to deal with the
infrastructure. (See section on event-handling.) Compared to a conventional “M”, the use of get data mimics a data base
copying the desired viewable values from the controller.

The major mirror assumption is that HMI objects communicate to control objects via proxy agents. An analysis of how
the HMI mirror works will be developed.
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Figure 33: Close-up of HMI Proxy Interaction

1. To handle the information report functionality, an HMI mirror acts as a remote data base that replicates the
state and functionality of the controller object and then adds different presentation views of the object. These
HMI mirrors are not exact mirrors of the controller state, but rather contain a “snapshot” of the controller state.
Figure 33 illustrates the interaction of the HMI mirror and the control object. In the basic scenario of
interaction, the control object is the server and the HMI mirror object is the client. Each HMI mirror uses the
accessor functions of “get” and “set” to interact with the control object. Notice that each host controller object
and its corresponding HMI mirror have a proxy agent to mediate communication.

2. To handle command functionality, the HMI mirror contains the same methods as the controller object so that a
command is issued by invoking a method remotely.

3. To handle abnormal events when not polling, an HMI mirror must serve as a client to the control object so that
it can post alert events. For such unsolicited information reports, the control object uses an event notification



 THE OMAC API  SET WORKING DOCUMENT

  VERSION 0.18

 2/26/98 47

function, updateCurrentView , in which to notify the HMI mirror that an event has occurred. This
notification in turn may be propagated to a higher-authority object.

View

The MVC view “V” deals with the presentation medium, for example, whether it is a “V” for a GUI or a teach pendant.
As previously stated, the OMAC API is not concerned with the “V” aspect pertaining to “look or feel” of a HMI.

Of importance to the OMAC API specification pertaining to the MVC control “V” is the aspect that deals with data
views. Different data views correspond to different modes of presentation. For example, there can be a view for
configuration, calibration, error handling - as well as normal operation. In addition, the view “V” can be used to offer
different screens to different levels of authority, such as for operator, maintenance, or systems engineer.

Given this emphasis on data views, the OMAC API defines the following “V” methods to handle the different expected
data views.

interface HMI
{
  void presentErrorView();
  void presentOperationalView();
  void presentSetupView();
  void presentMaintenanceView();
};

The association of data views along with a control component offers a strong potential for “complete” off-the-shelf
integration. Instead of buying a control component with a standalone calibration program, a control component would
come with a control view component. Then, just as the control component can be integrated into the application
controller, so too can its corresponding control view component be automatically integrated into the controller
presentation. As an example of this technology, a tuning package can provide a Windows-based GUI to do some knob
turning. Another example, is a tuning package that offers this capability to be plugged inside a Web browser. With this
development, unlimited component-based opportunities are available.

The MVC controller “C” discussion will further explore the coupling of a control component with a view component for
automated system development.

Controller

The MVC controller “C” is responsible for controlling the views presented to the user. In Figure 33 the control object is
represented by the Client which changes views based upon the use of different MVC “V” methods (i.e., the different
types of presentView  methods - see above). However, the Client is not bound to use the mirror “V” methods when
constructing presentation views. There exists a range of approaches that the MVC “C” Client can use when controlling
the user presentation - from least to most customized.

In Figure 33, the Client is using the HMI mirrors to present the view. Exclusive use of the HMI mirrors presentation
views could be considered the least customized option. The Client is bound to the view that the control vendor supplies.
However, the benefit is that Client-builder has the least amount of work to do. In the least-customized, the following
concepts apply.

• each object contains methods which can display the object in one of several views

• each of these methods can be given display real-estate by the caller

• each object may recursively use its real-estate to display objects which it uses

• users may override these methods, if desired, for minor customizations

At the other extreme, a more monolithic, all-powerful Client could ignore the HMI mirror presentation views altogether.
This approach could be considered the most customized option. In this case, the monolithic Client uses the HMI mirrors
for data manipulation purpose only and the Client presents its own view of the data. The Client can develop any view it
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wishes. However, the Client-builder has the greatest amount of work in doing so. In the most-customized, the following
concepts apply.

• a “super-object”, which is aware of all of the other objects (and their types) is created

• the “super-object” contains all code needed to create displays

• the “super-object” may use the default methods if desired

• the “super-object” may implement exactly the screens desired

Today, the MOST CUSTOMIZED approach with its monolithic, all-encompassing, micro-management of the controller
presentation is most prevalent. This monolithic approach is most common mostly out of default because few, if any,
control components provide HMI views. It is hoped that OMAC API MVC “V” methods will help change this situation.

4.10 MACHINE TO MACHINE INTERFACE

MMS (Manufacturing Message Specification) is an OSI application layer protocol designed for the remote control and
monitoring of industrial devices such as PLCs, NCs or RCs. It provides remote manipulation of a controller that includes
the following services:

Variables   can be simple (booleans, integers, strings...) or structured (arrays or records). MMS variables can be read or
written individually, in lists (predefined or explicitly defined).

 Programs  can be remotely started, stopped, resumed, killed.

 Transfer  allows for the download or upload of areas called domains, which can contain code, data or both.

 Semaphores  define two classes of semaphores, which can be used to ensure mutual exclusion or synchronization of
processes.

 Events  provide services for attachment of an action to an event and enrollment of calling or another process to receive
the event notifications.

The goal of the OMAC API is to provide an object oriented programming interface for remote functionality. It is expected
that the baseline functionality would be the primary MMS capabilities. The following MMS functionality was determined to
be mandatory:

• initiate
• conclude
• cancel
• unsolicited status
• solicited status
• getnamelist
• identify
• read
• write
• information report
• get variable access attribute
• initiate download sequence
• download segment
• terminate download sequence
• initiate upload sequence
• terminate upload sequence
• delete domain
• get domain attributes
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It is expected that the implementation of an OMAC API MMI interface would offer a convenient programming interface that
is not restricted to use MMS for its underlying communication technology. As envisioned, the internal controller
infrastructure could be an ORB, while the external communication could be ORB or MMS based.

5 DISCUSSION

OMAC API has developed an API specification that is scaleable for the system design, integration and programming for
systems ranging from a single-axis device to a multi-arm robot. The OMAC API working group's initial focus was to establish
programming requirements for precision machining. Applicability to other control environments may be possible but is not
guaranteed. The OMAC API primary focus has been to define Application Programming Interfaces for certain modules that
the ICLP community routinely wants to upgrade. In addition, the workgroup has defined an assembly framework with which
to connect these modules.

OMAC API has posted other papers to describe related information on life cycle, general computation models, and control
models. For more information, see the Wide World Web at the Universal Resource Locator address:

             http://isd.cme.nist.gov/info/omacapi

Within the OMAC API home page, there are hyperlinks to send comments, and to review comments and responses.

The OMAC API effort is not finished. The focus of effort has been to develop module APIs and to create a methodology for
assembling and reconfiguring modules. Areas outside the OMAC API initial thrust areas or areas of disagreement include:

• performance evaluation

• validation and verification

• resource profiling

• configuration construction

• error handling and error propagation

• scheduling

• module timing profile

• event handling

• machine-to-machine interface (MMI) is outlined but incomplete.

The remaining sections will discuss some of the issues in dispute or issues that remain unresolved.

5.1 SCHEDULING AND UPDATING

Hard real-time is fundamental to a controller operation and falls under the auspices of the Real-Time Operating System.
Often, commercial RTOS only support priorities to manage task scheduling. This technique is flawed. It would be preferable
if one could perform periodic updating by assigning periods and a time quantum to tasks. However, the OMAC API could not
agree on a single solution to this problem. This section will discuss one of many solutions.

OMAC modules can run as asynchronous or synchronous tasks. Asynchronous tasks are event-driven which is discussed in
the next section. Synchronous tasks are expected to run periodically at a fixed frequency and bounded duration. Execution of
a synchronous task can be either handled externally by a scheduling updater or internally by self-clocking. The remainder of
this section will develop the concept of a Scheduling Updater module.

OMAC API has defined an Updater API for task execution. It is an optional API that can be useful as a reference. The Update
API contains Updatable, AsynchUpdater, and PeriodicUpdater  classes. If an OMAC module is
periodic, it may derive the method update()  by inheriting it from the Scheduling Updater class Updatable . For the
Axis Module, the method update()  is a wrapper that calls processServoLoop() . The update()  method
simplifies invocation, since the updater  can go down a list of modules and invoke one signature.

An example to illustrate the multi-client/server interaction will be developed. First, the object naming and constructor
definition that is done at configuration time will be sketched. The integration creates object references (i.e., io1 , io2 , ax1 ,
axgrp1 ) and then binds addresses to the created objects through some name registration. Since ax1  and axgrp1  are
periodic updating OMAC modules, they have inherited a method update()  and register with the PeriodicUpdater
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updater  using its registerUpdatable()  method. The second parameter field in registerUpdatable()
method is the clock divisor.

integrationProcessInit(){
        // initialize parameters
        PeriodicUpdater updater;

        IOPoint  io1= new IOPoint(“encoder1”);
        IOPoint  io2= new IOPoint(“actuator1”);}
        Axis ax1= Axis(“Axis1”, io1, io2);
        AxisGroup axgrp1= AxisGroup(“AxisGroup1”, ax1);

        updater.setTimingInterval(.01);  // 10 millisecond period
        updater.registerUpdatable((Updatable *) axgrp, 2);
        updater.registerUpdatable((Updatable *) ax1, 1);
}

Next, a sequence of operations will highlight the connection between the Scheduling Updater (Updater ), the Axis Group
module (AxGrp ), the Axis module (Axis ) and the actuator and encoder IO points. Within the Axis  module, references to
the component classes AxisVelocityServo, AxisCommandOutput  and Control Law  module will be made.
(Readers are referred to Section 4.0 to further review Axis components.)

Figure 34 presents an Object Interaction Diagram to track the sequence of axis operation as triggered by a Scheduling
Updater. The Updater calls the AxisGroup, which sets followingVelocity servo control and sends a commanded velocity
setpoint. The Updater then triggers the Axis which in turn causes a processServoLoop()  to perform a servo cycle.
Since velocity servoing is enabled, the AxisVelocityServo is responsible to get the velocity command, read the axis actual
velocity (as retrieved from io1), computes the next acceleration setpoint using a Control Law and then output a commanded
acceleration to io2.
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Figure 34: Schedule Updating Axis Object Interaction Diagram

As seen, the Axis module method processServoLoop  performs the basic inputs, computes and outputs expected of a
cyclic process. This functionality includes state interpretation so that an Axis module typically has a reference to an Axis
FSM. Within the Axis FSM, the calls to AxisVelocityServo  are made.

As stated earlier, one assumption within the object interaction is that a state transition, such as followingVelocity , is
permissible. If not, either the method invocation is ignored or an exception is thrown.

Overall, the Scheduling Updater method update()  is really a wrapper that calls processServoLoop . Hence, it isn't
necessary to use an Updater. However, the update()  wrapper does provide a generic interface to simplify scheduling of a
variety of modules.
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5.2 EVENT HANDLING

Standard client object requests to a server object result in synchronous execution of operation. In this case, the client sends
the request and awaits a server response. This synchronous model includes the standard client-push model that sends an event
through a method invocation. Section 3.3.1 has more on the client-push model.

Many times client-server interaction requires a more decoupled communication model. Of interest is the client-server
interaction, called the server-push model,  in which the server can spontaneously (asynchronously) issue an event to the
client. For example, it is desirable to send an asynchronous informDone()  event to the Task Coordinator when a CPU
finished execution in the Axes Group. The question arises, “How is the Task Coordinator informed that the Axis Group is
finished?” There are several options:

• The Task Coordinator polls the Axis Group with the isDone()  method. This is the client-pull  event
method.

• Use cross-reference pointers between the communicating objects. In this case, the AxisGroup has a
reference pointer back to the Task Coordinator, and it invokes a method (e.g., informDone() ) to alert
the Task Coordinator. There still must be some programming mechanism to tell the AxisGroup that it
needs to call the Task Coordinator. Most likely, informDone()  is mirrored in the TaskCoordinator
and the AxisGroup to achieve this programming. The TaskCoordinator calls the AxisGroup
informDone()  to set the event, and the AxisGroup calls the TaskCoordinator informDone()
when the event occurs. A simple event model is to add to all isXstate()  query methods an
informXstate()  corollary.

• Another approach is to have the Task Coordinator call an AxisGroup method waitUntilDone()  that
blocks until the AxesGroup is done.

No agreement has been reached at this time regarding any standard server-push event model(s) or any server-push events.

The following general-purpose sequence has been proposed as the server-push event model:

• clients register what events it cares about with the server capable of detecting the event

• server send unique event id to client as part of registration

• when server detects an event it looks in a table (linked list) of clients which care about that event and
sends the event id to each client (id will be unique for each client)

• clients use and unregister events using the id not the name.

5.3 CONFIGURATION

As a part of the open architecture life cycle, configuration and integration are important elements. Configuration is defined
as module specification that maps it into a specific solution. Integration is defined as the capability to allow the connection
and cooperation of two or more modules within a system. Readers are urged to review an OMAC API document concerning
the open architecture Life Cycle that can be found at URL http://isd.cme.nist.gov/info/omacapi/Bibliography/oalifecycle.pdf.
Briefly summarizing, the following steps outline the major configuration and integration steps.

1. distribution of modules to processes

2. distribution of processes to CPU

3. assignment of interprocess communication via proxy manager to processes

4. module/object construction and connection

This section will review the module construction phase because of the crucial role of global naming within the open
architecture paradigm.

The construction phase is responsible for building the name data base and registering names with the appropriate lookup-
information (e.g., address pointer or server information such as host id and server name). Within the Object Oriented
paradigm there is a constructor phase wherein all the static application objects (in this case modules) must be constructed.

At this time, no agreement has been reached regarding configuration for module constructors. Herein a couple of alternatives
for module constructors will be discussed.
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Advertisement Model - The constructor is an advertisement for what a module needs. As an example, an OMAC API
Configurator would construct a directed graph of modules in the system. The Task Coordinator would use the directed
graph to construct the system. In a pure approach only the constructor would contain configuration information, as in the
following example.

 X_AXIS = new Axis(new PID_CL());
Y_AXIS = new Axis(new PID_ControlLaw());
AG1 = new AxisGroup(X_AXIS,  Y_AXIS);

One problem with the pure constructor approach is resolving circular references. For example, suppose the Axis and Axis
Group modules' constructor need a reference to each other.

Another problem with pure constructors for configuration is handling combinatorial explosion of constructor
possibilities. For example, if the system is not doing force control, does one need a set of special constructors to allow
AxisForceServo control law references? To handle the combinatorial explosion, one could either define a monolithic
constructor that accepts null references, or define constructors for each potential configuration.

The use of SETPARAMETERREFERENCE (e.g., setControlLaw  below) helps reduce the combinatorial
constructor possibilities. However, in this case, configuration is now based on selectively configuring parameters. The
following example illustrates configuring the X and Y positioning servo control law.

X_AXIS = new Axis();
Y_AXIS = new Axis();
X_AXIS->AxisPositioningServo->setControlLaw(new PID_ControlLaw());
Y_AXIS->AxisPositioningServo->setControlLaw(new PID_ControlLaw());
...
AG1 = new AxisGroup(X_AXIS, Y_AXIS);
if((s=AG1->isSatisfied)!=NULL) cout << “Missing Parameter”<< s << endl;

Although flexible, selectively configuring parameters is vague so that it can be unclear what parameters must be
specified. The potential for chaos can arise without some formalism. Does the AxisForceServo control law need to be
configured? How does one determine when the AxisForceServo control law needs to be configured? To avoid confusion,
a configuration method such as isSatisfied()  that returns a string array of missing parameter definitions is
essential.

Registry Model – In this case, the constructor plays a small role and system generation is name-driven. It is expected that
names would be maintained in a globally accessible registry either a simple table or data base. Resolving object references
would use a setParameterReference - although this time the method signature would be string-oriented.

Naming is divided into two categories - local naming and global naming.

Local naming is responsible for the names associated with a particular module. A vendor would be responsible for
distributing a local naming table associated with each module. For example, the following table sketches a local naming
table for an Axis module.

Local Name Type Configured

“ENCODER” “IO_FLOAT” Y

“ACTUATOR” “IO_FLOAT” Y

“POSITION_CONTROL_LAW” “OMAC_CONTROL_LAW” y

“VELOCITY_CONTROL_LAW” “OMAC_CONTROL_LAW” y

…

Global naming is responsible for mapping local names to global names. Global naming serves two purposes. First, the
global naming allows system access to local address references. Second, global naming enables familiar naming
conventions. For example, a three axis mill would have three instances of the parameter ENCODER that could be
resolved into corresponding global names of X-ENCODER, Y-ENCODER, and Z-ENCODER.
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Global Name Module Local Name

“X-AXIS-ENCODER” “X_AXIS” “ENCODER”

“X-POSITION-CONTROL_LAW” “X_AXIS” “POSITION_CONTROL_LAW”

… … …

“Y-AXIS-ENCODER” “Y_AXIS” “ENCODER”

“Y-POSITION-CONTROL_LAW” “Y_AXIS” “POSITION_CONTROL_LAW”

… … …

There would be several steps in configuring a global naming scheme, including:

1. Create with “new” and constructor(string NAME) . In this case, the constructor takes a unique
name, registers the name and module type in the global registry, and uses recursion to back through the object's
parents to add type/name for registry (or self-discovery).

Axis X_AXIS = new Axis(“X-AXIS”);
Axis Y_AXIS = new Axis(“Y-AXIS”);
ControlLaw CL1 = new PID_ControlLaw(“CL1”);
ControlLaw CL2 = new PID_ControlLaw(“CL2”);

Recursion is necessary because modules (i.e., objects) may be specialized and other modules may need a less
specialized object. For example, a “SercosAxis” module is also a derived type of “Axis” and “OMAC Module”.
Self-discovery of an object such as “SercosAxis” would recursively descend its parents until it reached some
base class, in this case “OMAC Module”. To provide a flexible naming service, lists for types and objects
should exist to provide object references. Figure 35 illustrates the relationship between each module base and
derived types which have a pointer to a list of object names, which in turn, contains the actual object reference.
This table could preexist in some data base.
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Figure 35: Type and Object Reference Lists from Recursive

2. Initialize objects. This initialization scope is directed at objects' local variables such as zeroing private variables. No
external references should be used as these references may not have been resolved yet.

3. Connect objects by assigning names to different internal references. The general method signature would be:

        setReference(string localName, string  globalName);

The following illustrates the registering some Axis and Axis Group names.
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        AG1->setReference(“AXIS1”, “X-AXIS”);
        AG1->setReference(“AXIS2”, “Y-AXIS”);
        X_AXIS->setReference(“PositioningServoControlLaw”, “CL1”);
        Y_AXIS->setReference(“PositioningServoControlLaw”, “CL2”);
        if((s=AG1->isSatisfied)!=NULL) cout << “Missing Parameter”<< s << endl;

Within a module, the setReference  method would do a symbolic lookup of the type based on the local
name, and then use the type to retrieve the actual reference. The following code sketches this approach.

         class Axis {
         ...
         IOFloat Encoder;
         string itemType;

           void setReference(LocalName localName, GlobalName globalName){
                itemType=typelookup(localName);
                switch(localName){
                   case “encoder”:
                     encoder= (IOFLoat) lookup(globalName, itemType);
                     break;
                   ...
                }
            }
          }

As an alternative to hard coding the connections, a module could read a file or data base to derive the
references it needs. The table could contain other performance parameters as well. Below is a sketch of the
information that could be expected using a file registry.

#
# Global Name     Type           Period   Timing       Local Names
#
  AxGrp1        AxisGroup        .01      .002         Ax1=“X”
                                                       Ax2=“Y”
                                                       Ax3=“Z”
  X             Axis             .001     .0002        Output= “act1”
                                                       Feedback= “enc1”
                                                       Position= “PIDControlLaw”
                                                       Velocity= “Sercos1”
                                                       Acceleration= NULL

  Y             Axis             .001     .0002        Output= “act2”
                                                       Feedback= “enc2”
                                                       Position= “PIDControlLaw”
                                                       Velocity= “Sercos2”
                                                       Acceleration= NULL

  Z             Axis             .001     .0002        Output= “act3”
                                                       Feedback= “enc3”
                                                       Position= “PIDControlLaw”
                                                       Velocity= “Sercos3”
                                                       Acceleration= NULL
  Sercos1   SERCOSControlLaw
  Sercos2   SERCOSControlLaw
  Sercos3   SERCOSControlLaw

# This is sketch of an Abstract to Physical IO Map
# IOPTs    Type    Board      Address        Bytes
  act1     IO-W    D/A1       0xFFFFFF00      8
  enc1     IO-R
  act2     IO-W
  enc2     IO-R
  act3     IO-W
  enc3     IO-R

4. Reinitialization of objects. The second pass assumes that all external references are resolved, so that an object
can access external objects as part of its initialization sequence.
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5.4 ERROR HANDLING, ERROR PROPAGATION

“Exception and error handling is 90% of the aggravation on the shop floor.” Attempting to resolve errors/exceptions as they
propagate through the system is difficult. Errors can be hard to anticipate and/or resolve. However, errors and exceptions are
really just server-push events (clients don't push errors on the servers). Infrastructure support for server-push event handling
is weak.

As an intermediary solution, a simple error propagation technique is to allow object cross-references so that for every pair of
objects, each one has a reference to the other object. In this case, each invokes methods in the other to propagate and event.

Within OMAC API, a proposal for handling errors is for each OMAC module to support an error CPU with a
setErrorCPU(cpu)  method. In the event an error occurs, an error(errcode)  method could be invoked. For
example, in the case that a Task Coordinator received an error event, it could then dispatch the ERROR Capability. The
ERROR Capability could be passed an error code or be smart enough to analyze the system and determine the error.

As another example, consider the handling of thermal overload on a drive. How does it trickle up? A straightforward solution
is to add a CPU to the Discrete Logic to monitor this event. If the overload occurs and the Discrete Logic can not rectify the
error it could then notify the Task Coordinator of an error which will then initiate the ERROR Capability.
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APPENDIX A -  API

Technical Note: These API are for review and comment only. There is no guarantee of correctness. This specification
approximates the intended direction of the final API.

A.1 DISCLAIMER

This software was produced in part by agencies of the U.S. government, and by statute is not subject to copyright in the
United States. Recipients of this software assume all responsibility associated with its operation, modification, maintenance,
and subsequent redistribution.

A.2 NAMING CONVENTIONS

The naming convention for the IDL specification uses the Hungarian notation of separating words with CapitalLetters. (This
release removed all the “_” and used concatenation of Capital letters to distinguish words.) The following conventions are
being followed.

    File Name                        : same as major class name (JAVA convention)
    #define    for constants         : entire name in UPPER CASE
    class name & declaration         : CapStyle
    class/variable instance          : smallCapStyleAgain
    method arguments                 : smallCapStyleAgain

    general method signature         : nameCapStyle
            query  parameter         : getParameterName
            assignment               : setParameterName
            state query              : isStateName

There is consideration for adding a classifying prefix to class instances, global and static variable declarations and method
arguments. In this case, d_VariableName would indicate a double variable. Note, C++ function declarations need parameter
types but not parameter names, however, IDL requires both.

The use of get and set methods on these attributes, since IDL does not produce a get/set prefix to the methods. This will not
work for non-IDL-like systems.

A.3 NAME TRANSLATION SPECIFICATION

An OMAC API naming convention has been defined. Hopefully, the class and method names chosen by the OMAC API are
reasonable. However, more elaborate naming conventions (e.g., Hungarian with type prefix) are common. Hence, one
encounters the problem of mapping from one naming convention to another. This mapping from one name space to another
can be done, but it isn't trivial. Options for name mapping include:

1. use #defines to redefine names at compile time.

2. use class wrapper to map one name set into another. This wrapping adds another layer of indirection,
which slows down execution.

3. use name translation table enabled by infrastructure communication. such as when rpc does
encoding/decoding of signatures (IDL compiling automates this process).

4. linearization of the object-oriented classes methods into messages that map into a global id table

Outside of the #defines, the options are not realistic.

A.4 BASIC TYPES

    1      #ifndef DataRepresentation
    2      #define DataRepresentation
    3
    4      // Level 1 - these will be backed out from the other API definitions
    5      //
    6      typedef long                API;
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    7      typedef double              AngularVelocity;
    8      interface                   CoordinateFrame{};
    9      interface                   FILE { };
   10     typedef double              Force;
   11     typedef double              Length;
   12     typedef double              LinearVelocity;
   13     typedef double              LinearAcceleration;
   14     typedef double              LinearJerk;
   15     typedef double              LinearStiffness;
   16     interface                   LowerKinematicModel {/*FIXME*/ } ;
   17     typedef double              Magnitude;
   18     typedef double              Mass;
   19     // Matrix???
   20     typedef double              Measure;
   21     interface                   OacVector{};
   22     typedef double              PlaneAngle;
   23     interface                   RESOURCE  {/*FIXME*/ } ;
   24     interface                   RPY  {/*FIXME*/ } ;
   25     typedef long                Status;
   26     interface                   Time { /* FIXME */ };
   27     interface                   Transform { /* FIXME */ };
   28     interface                   UNITS {/*FIXME*/ } ;
   29     interface                   UpperKinematicModel {/*FIXME*/ } ;
   30     typedef double              Velocity;
   31
   32     interface                   Translation  {/*FIXME*/ } ;
   33     typedef Translation         CartesianPoint;
   34
   35     /*
   36     //?? Or you can assume numbers are flagged not active at
   37     //?? construction time.
   38     // Below most control parameters would be typed as double
   39     #define doubleNotActive 1.79769313486231570e+308
   40     #define longNotActive 0x80000000
   41     #define shortNotActive 0x8000
   42
   43
   44     // Level 2  Example - not defined here
   45
   46     interface LinearVelocity : Units  {
   47             Magnitude  value; // should this value be used?
   48             // Upperbound and Lowerbound, both zero ignore
   49             Magnitude ub, lb; // which may be ignored
   50             disabled();
   51             enabled();
   52     };
   53     interface Units
   54     { // FIXME
   55     };
   56     */
   57
   58     #endif

A.5 OMAC BASE CLASSES TYPES

    1      #ifndef _OMAC_BASE_CLASS
    2      #define _OMAC_BASE_CLASS
    3      // string <=> char *
    4      // All class definitions should register with central name/type server
    5
    6      interface OMACClass
    7      {
    8        void setName1();
    9        void setName(in string aName);
   10       string getName();
   11
   12       void setType(in string aType);
   13       string getType();
   14
   15     };
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   16
   17     interface OmacModule
   18     {
   19       // Administrative State Transition Methods
   20       void  estop();
   21       void  reset();
   22       void  init();
   23       void  startup();
   24       void  enable();
   25       void  disable();
   26       void  execute();
   27       void  shutdown();
   28
   29       void  throwException();
   30       void  resolveException();
   31
   32     //  void  stop();
   33     // void  abort();
   34
   35
   36       boolean isReset();
   37       boolean isInited();
   38       boolean isEnabled();
   39       boolean isDisabled();
   40       boolean isReady();
   41       boolean isEstopped();
   42     //  boolean isException();
   43
   44     };
   45     #endif

A.6 SCHEDULING UPDATER

    1
    2      interface Updatable
    3      {
    4        double getPeriod();
    5        void setPeriod(in double aPeriod);
    6        void update();
    7      };
    8
    9      interface AsynchUpdater
   10     {
   11       void registerUpdatable(in updatable upd);
   12       void update();
   13     };
   14
   15     interface PeriodicUpdater : AsynchUpdater
   16     {
   17        double getTimingInterval       ();
   18     // /*no virtual*/   void update();
   19     };

A.7 CONTROL PLAN

    1      #ifndef CONTROL_PLAN
    2      #define _CONTROL_PLAN
    3      interface ControlPlanUnit;
    4
    5      typedef sequence<ControlPlanUnit> ControlPlanSequence;
    6
    7      interface ControlPlanUnit
    8      { // approximate  a graph structure
    9        ControlPlanUnit executeUnit(); // return next ControlPlanUnit
   10       // ControlPlanUnit getNextUnit();
   11
   12       void setActive();    // set when “executing”
   13       void setInactive();
   14       boolean isActive();   // for HMI to determine when active
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   15
   16       // persistence data a la binary image
   17       void save(in string file);
   18       void restore(in string file);
   19
   20       // persistence data in neutral format (pre-configuration)
   21       void saveNeutral(in string file);
   22       void restoreNeutral(in string file);
   23     };
   24
   25
   26     interface ControlPlan
   27     {
   28       // The graph is used for non-execution navigatation
   29       attribute ControlPlanSequence cpu; //
   30       attribute long clength;  // number of arcs in this graph node
   31       attribute long cmax;     // max number of arc possible should grow dynamically
   32       // FIXME: add traversal functions here
   33     };
   34
   35     #endif
   36
   37

A.8 CAPABILITY

    1      #include "OmacModule.idl"
    2
    3      // Each capablity is an FSM and types of capabilities include: manual, auto, estop, etc.
    4      // FIXME: What is the relationship of manual to auto and any to estop?
    5      // Internally the capbility is a FSM.
    6      interface Capability
    7      {
    8        void start();
    9        void execute();
   10       void updateCap(); //update() can call updateCap()
   11       void stop();
   12       void abort();
   13       void throwExecption();
   14       void resolveExecption();
   15       boolean isDone();
   16       boolean isActive();
   17     };
   18
   19     typedef sequence<Capability> Capabilities;
   20

A.9 IO

    1      #include "OmacModule.idl"
    2      #include "DataRepresentation.idl"
    3
    4      typedef char byte;
    5
    6      // Level 1
    7      interface IOPt : OMACClass
    8      {
    9        // How do you do this in IDL?
   10       // attribute (void *) (*monitor) ();  // is an independent thread of execution
   11
   12       //?? attribute device-info;   // reference to device info
   13
   14       // Metadata
   15       attribute long type;   // 1=read-only, 2=read/write, 0=don't care
   16       // or use IO derived type to differentiate types
   17       attribute UNITS myunits;
   18       //?? attribute <T> upperBound;
   19       //?? attribute <T> lowerBound;
   20



 THE OMAC API  SET WORKING DOCUMENT

  VERSION 0.18

 2/26/98 63

   21     };
   22
   23     interface IOPtlong : IOPt
   24     {
   25       long getValue();
   26       void setValue(in long v);
   27
   28     };
   29
   30     interface IOPtshort : IOPt
   31     {
   32       short getValue();
   33       void setValue(in short v);
   34
   35     };
   36
   37     interface IOPtbyte : IOPt
   38     {
   39       byte getValue();
   40       void setValue(in byte v);
   41
   42     };
   43
   44     interface IOPtboolean : IOPt
   45     {
   46       boolean getValue();
   47       void setValue(in boolean v);
   48
   49     };
   50
   51     interface IOPtdouble : IOPt
   52     {
   53       double getValue();
   54       void setValue(in double v);
   55
   56     };
   57
   58     interface IOPtfloat : IOPt
   59     {
   60       float getValue();
   61       void setValue(in float v);
   62
   63     };
   64
   65
   66     interface callbackNotification
   67     {
   68       void execute();
   69     };
   70
   71     interface IOPtNotify
   72     {
   73       void notifyHandlers(); /* list management */
   74       void attach(in callbackNotification cb);
   75     };
   76
   77
   78     typedef sequence<IOPt> IOvalues;
   79     typedef sequence<string> IOnames;
   80     typedef sequence<string> IOmetadata;
   81
   82     // Or should this just be an array of IOPts?
   83     interface IOgroup
   84     {
   85       IOvalues getValues();
   86       void setValues(in IOvalues values);
   87
   88       void addIoPtlong(in IOPtlong io);
   89       void addIoPtshort(in IOPtshort io);
   90       void addIoPtboolean(in IOPtboolean io);
   91       void addIoPtdouble(in IOPtdouble io);
   92       void addIoPtfloat(in IOPtfloat io);
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   93       IOnames getNames();
   94       IOmetadata getMetadata();
   95     };
   96
   97     interface IOsystem
   98     {
   99       void addIoGroup(in IOgroup aIOgroup);
  100      IOgroup getIoGroup(in string name);
  101      // FIXME: how do you do this in IDL?
  102      // IOPt getIoPt(char * name);
  103    };
  104
  105
  106    #ifdef SKIPTHIS
  107    // Examples
  108
  109    // example derived type
  110    // interface IOPtNotifyOnSignChange: IOPtNotify { } ;
  111
  112    // example io systems
  113    interface myIO : IOSystem
  114    {
  115      IOPtshort encoder1;
  116      IOPtshort encoder2;
  117      IOPtlong encoder3;
  118
  119      void update();
  120      callbackNotification newSampleAvailable; /* tell clients of new data */
  121      setPacerClock(divisor);  /* control */
  122    };
  123    #endif
  124
  125    // Level 2: Hierarchy of Common IO Points - for type checking
  126    // For later release.

A.10 TASK COORDINATOR

    1      #include "OmacModule.idl"
    2      #include "Capability.idl"
    3
    4      // Task Coordinator accepts one capability from a list of capabilities.
    5      interface TaskCoordinator : OmacModule /*UPDATABLE*/
    6      {
    7
    8        void update();  //can be inherited from UPDATER
    9
   10       // Capability List Management
   11         void addToList(in Capability  cap);
   12         void removeFromList(in Capability  cap);
   13         Capabilities getList();
   14
   15       // Current Capability Management
   16         Capability  getCurrentCapability();
   17         void setCurrentCapability(in Capability cap);
   18     };
   19

A.11 DISCRETE LOGIC

    1      #include "OmacModule.idl"
    2      #include "ControlPlan.idl"
    3
    4      interface DiscreteLogicUnit;
    5
    6      // Discrete Logic Module contains a list of logic units. A PLC like scan
    7      // goes down the list and executes each logic unit if it is on. Logic units
    8      // will be executed as often as its posted scan rate indicates.
    9      // Internally each discrete logic unit is an FSM.
   10     // Discrete Logic Units (DLUs) are grouped by scan rates.
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   11     interface DiscreteLogic : OmacModule
   12     {
   13
   14       // Logic Units Management
   15         DiscreteLogicUnit createDiscreteLogicUnit();
   16         void addLogicUnit(in DiscreteLogicUnit dlu);
   17         void removeLogicUnit(in DiscreteLogicUnit dlu);
   18         void enableLogicUnit(in DiscreteLogicUnit dlu);
   19         void disableLogicUnit(in DiscreteLogicUnit dlu);
   20     };
   21
   22     // Derived from ControlPlanUnit, see: part program translator
   23     interface DiscreteLogicUnit: ControlPlanUnit
   24     {
   25       void setInterval(in long aInterval);
   26       long getInterval();
   27
   28       void start();
   29       void scanUpdate();
   30       void stop();
   31       boolean isOn();
   32       boolean turnOn();    // external event causes invokes this method
   33       boolean turnOff();
   34     };
   35

A.12 CONTROL PLAN GENERATOR

    1      #include "DataRepresentation.idl"
    2      #include "ControlPlan.idl"
    3
    4      // Level 1 assuming simple File Manipulation
    5      interface ControlPlanGenerator
    6      {
    7          void setProgramName(in string s);
    8          string getProgramName();
    9
   10         boolean  checkSyntax();
   11         string getErrorCodes(); // or returns file name or file pointer?
   12
   13         ControlPlan  translate(); // complete translation into ControlPlan
   14         ControlPlanUnit getNextControlplanunit();  // step by step translation
   15     };
   16
   17     // Level 2  Production Data Management
   18     interface ProductionDataManagement : FILE /*VERSION */
   19     {
   20       // A standard should be completed by 9/97
   21     };
   22     interface CPGLevel2
   23     {
   24     //    attribute ProductionDataManagement pdm;
   25     };
   26
   27     // Defer interface specification to CAD
   28

A.13 AXIS GROUP

There are some inconsistencies within the Axis Group module API. The major remaining problem is to resolve the use of the
axis group velocity profile generator (VPG) versus having the VPG embedded within a motion segment.

    1      #include "DataRepresentation.idl"
    2      #include "OmacModule.idl"
    3      #include "Kinematics.idl"
    4      #include "ControlPlan.idl"
    5
    6      //+ add accel mode - use instead of enum - windows problem
    7      typedef long ACCMode;
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    8      #define  SCURVE 1
    9      #define  TRAPEZOIDAL 2
   10
   11     interface                  AxisGroup;
   12     typedef   long             AccDecProfile;
   13     interface                  CoordinatedAxes { /* FIXME */ };
   14     interface                  CRCMODE         { /* FIXME */ };
   15     interface                  MotionSegment;
   16     interface                  Rate;
   17     interface                  VelocityProfileGenerator;
   18
   19     interface AxisGroup : OmacModule
   20     {
   21     //+  enum { ERROR, HELD, HOLDING, STOPPED, STOPPING, PAUSED, PAUSING, RESUME, EXECUTING, ID
};
   22
   23       // STATE LOGIC
   24       // =============================================
   25
   26       void hardStopAxes();  // Stop at max deceleration rate (abort)
   27       void pauseAxes();      // stop on path
   28       void holdAxes();       // stop at end of segment
   29       void resumeAxes();     // Resumes motion from current point
   30
   31     //  void    updateAxes();
   32       void    update();       //+ changed for consistent interface
   33
   34       long getCurrentState();
   35       string getCurrentStateName();
   36       boolean isOk();
   37       boolean isExecuting();
   38       boolean isHeld();
   39       boolean isHolding();
   40       boolean isPaused();
   41       boolean isPausing();
   42       boolean isStopping();
   43       boolean isStopped();
   44
   45       // These methods could be operator Control Plan Unit
   46       void jogAxis(in long axisNo, in Velocity speed );
   47       void homeAxis(in long axisNo, in Velocity speed );
   48       void moveAxisTo(in long axisNo, in Velocity speed, in Length  toPosition);
   49       void incrementAxis(in long axisNo, in Velocity speed, in Length increment);
   50
   51       // BUFFERING MANAGEMENT
   52       //===============================================
   53       void setNextMotionSegment(in MotionSegment block);
   54       // MotionSegment getCurrentMotionBlock( );  //hazardous to your controller's health
   55       long getMaxqsize();              // largest queue size possible=n
   56       void setQlength(in long value); // maximum number of queue members=(1..n)
   57       long getQlength();
   58       long getCurrentQsize();     // number of items in queue=i
   59       boolean isFull();           // number of items = n
   60       boolean isEmpty();          // number or items = 0
   61
   62       void flush();                // flush all segments
   63       void skip();                 // skip to next segment
   64       void saveQContext();       // save current queue
   65       void restoreQContext();    // restore saved queue
   66
   67       // FIXME: possibly more queue mgt functions (accessor, query, ... )
   68
   69       // CONVENIENCE FUNCTIONS TO ACCESS MOTION SEGMENT DATA
   70       //===============================================
   71       Length  getNeighborhood();
   72       LinearVelocity  getFeedrate();
   73       Velocity  getTraverserate();
   74       double getFeedrateOverride();
   75       double getSpindleRateOverride();
   76       LinearJerk  getJerkLimit();
   77       boolean getInPosition();
   78       void setInPosition(in boolean value); /* private method*/



 THE OMAC API  SET WORKING DOCUMENT

  VERSION 0.18

 2/26/98 67

   79
   80       // See Note 1
   81       Measure getActualAxisPosition(in long axisNo );
   82       OacVector getActualAxesPositions( );
   83       CoordinateFrame getXformedActualPositions();
   84       Measure getCommandedAxisPosition(in long axisNo );
   85       OacVector getCommandedAxesPositions( );
   86       CoordinateFrame getXformedCommandedPositions(in OacVector axisPositions);
   87
   88       ACCMode getAccmode();
   89
   90       // KINEMATIC INFORMATION
   91       //===============================================
   92       // Axis under control
   93       CoordinatedAxes  getCoordinatedaxes();
   94       KinStructure  getKinstructure();
   95       void setKinstructure(in KinStructure value);
   96       Transform  getToolTransform();
   97       Transform  getBaseframe();
   98       void setBaseframe(in CoordinateFrame value);
   99
  100      // recovery from fault error, sharing
  101      void    inhibitAxis(in  long axisNo, in boolean inhibit );
  102      boolean    axisInhibitd(in long axisNo );
  103      void    inhibitSpindle(in boolean inhibit );
  104      boolean    spindleInhibitd();
  105
  106      // TRAJECTORY INFORMATION
  107      //===============================================
  108      void setBlending(in boolean flag);      // TRUE=ON, FALSE=OFF
  109      void setSingleStep(in boolean flag);   // TRUE=ON, FALSE=OFF
  110
  111      // void setVpg(in VelocityProfileGenerator vpg);
  112      // VelocityProfileGenerator getVpg();
  113
  114      // Timing is now a reference to another object
  115      // timeMeasure getAxisupdateinterval() const;
  116      // void setAxisupdateinterval(timeMeasure value);
  117      attribute Time timing;
  118
  119      void setPhysicalLimits(in Rate limits); //+ 3-Jun-1997
  120      Rate getPhysicalLimits();            //+
  121    };
  122
  123    // NOTES
  124    // 1. There is a problem in JAVA with returning data type.
  125    // Storing into calling parameter as a side effect Side
  126    // instead of
  127    //       OacVector getCommandedAxesPositions( );
  128    // use
  129    //       void getCommandedAxesPositions( OacVector positions );
  130    // It is possible to redo above in this signature style.
  131    // 2. Issue: There are issues as to maximum acceleration of device
  132    // versus Control Plan Unit (Motion Segment)
  133
  134    // Control Plan Class Definitions- Motion Segments
  135    #ifdef SKIP THIS
  136    interface CoordinatedAxes
  137    {
  138      // Fixme
  139    };
  140
  141    interface OacVector
  142    {
  143      // how does this differ from PathNode
  144    };
  145
  146    interface PathNode
  147    {
  148      transform getControltransform();
  149      void setControltransform(transform value);
  150    };
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  151    interface PathElement : public KinematicPath
  152    {
  153      void initAccDecProfile(in LinearVelocity vel);
  154      void setStartPoint(in PathNode startPoint ); // axgroup sets
  155      PathNode getStartPoint( );
  156      PathNode getEndPoint();                     // axgroup sets
  157      // void setEndPoint(in PathNode endPoint);    // ppt or internal use
  158      LengthMeasure getDistanceToGo();
  159      boolean isPathComplete();
  160      LengthMeasure pathLength();
  161      // LengthMeasure pathLength(XYZ xyz); // what is this
  162    };
  163    #endif
  164    interface Rate
  165    {
  166      void setNominalFeedrate(in double vnom);
  167      long setCurrentFeedrate(in double vmax);      // includes override
  168      long setMaximumAcceleration(in double amax);
  169      long setMaximumJerk(in double jmax);
  170
  171      double getNominalFeedrate();
  172      double getCurrentFeedrate();              // includes override
  173      double getMaximumAcceleration();
  174      double getMaximumJerk();
  175
  176      double getCurrentVelocity();
  177      void setCurrentVelocity(in double vcur);
  178
  179      double getFinalVelocity();
  180      void setFinalVelocity(in double vcur);
  181
  182      double getCurrentAcceleration();
  183      void setCurrentAcceleration(in double acur);
  184
  185      long getAccState();
  186      void setAccState(in long val);
  187      boolean isDone();
  188      boolean isAccel();
  189      boolean isConst();
  190      boolean isDecel();
  191
  192      void setNominalSpindleSpeed(in double spd); // why here?
  193      double getNominalSpindleSpeed();
  194    };
  195    interface KinematicInfo
  196    {
  197      void setToolCenter(in Length effectiveDisplacement,
  198                         in CRCMODE cutterRadiusCompensation);
  199
  200      Transform getCurrentFrame();
  201      void setCurrentFrame(in Transform currentFrame );
  202
  203      KinMechanism getKinematics();
  204      void setKinematics (in KinMechanism kin);
  205    };
  206
  207    interface VelocityProfileGenerator
  208    {
  209      AccDecProfile getAccdecprofile();
  210      void setAccdecprofile(in AccDecProfile value);
  211
  212      void setBlendingPointDistance(in double distance );
  213      double getBlendingPointDistance();
  214
  215      Time getSamplingTime();
  216      void setSamplingTime(in Time value);
  217      /* New  3-Jun-1997 */
  218      void holdSegment();
  219      void pauseSegment();
  220      void resumeSegment();
  221    };
  222    // Base Class for Motion Segment
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  223    // Derived from ControlPlanUnit  - see part program translator
  224    interface MotionSegment  : ControlPlanUnit
  225    {
  226      attribute KinematicInfo kin;
  227
  228      void setVpg(in VelocityProfileGenerator  aVPG);
  229      VelocityProfileGenerator getVpg();
  230
  231      void setTranslationalRate(in Rate rate);
  232      Rate getTranslationalRate();
  233
  234      void setOrientationRate(in Rate rate);
  235      Rate getOrientationRate();
  236
  237      void setAngularRate(in Rate rate); // does this belong in axis group?
  238      Rate getAngularRate();
  239
  240      // if internal velocity profile generation supply this interface
  241      void setBlendingPointDistance(in double distance );
  242      double getBlendingPointDistance();
  243
  244      Length calcDistanceRemaining(); // axes
  245
  246      OacVector getIncrementalDistance( );
  247      OacVector getLengthsRemaining();  // per axis
  248      OacVector calcNextIncrement(in double feedOverride,
  249                                    in double spindleOverride
  250                                    //? doesn't this need in currentPosition
  251                                    /* FIXME , double[]    increment = NULL /* ignore side effec
  252                                    );
  253      boolean startNextSegment(); //? what does this mean init?
  254    //?  int init(double cycleTime); //+ 3-Jun-1997
  255      void pauseSegment();
  256      void holdSegment();  /* new */
  257      void stopSegment();  /* new 3-Jun-1997 set motion to done */
  258      void resumeSegment();
  259      boolean isPaused();
  260      boolean isHeld();
  261
  262    #ifdef SKIPTHIS
  263
  264      // Program information (file, line number, block) and signals(active)
  265      void setPpb( PartProgramBlock ppb );
  266      void segmentStarted();
  267      void segmentFinished();
  268    #endif
  269    };
  270    //NOTES:
  271    // 1. Handling Termination Condition:
  272    // a. Exact Stop = blending distance=0
  273
  274

A.14 AXIS

    1      #include "DataRepresentation.idl"
    2      #include "OmacModule.idl"
    3
    4      interface Axis;
    5      interface AxisAbsolutePos;
    6      interface AxisAccelerationServo;
    7      interface AxisCommandedOutput;
    8      interface AxisDyn;
    9      interface AxisErrorAndEnable;
   10     interface AxisForceServo;
   11     interface AxisHoming;
   12     interface AxisIncrementPos;
   13     interface AxisKinematics;
   14     interface AxisJogging;
   15     interface AxisLimits;
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   16     interface AxisMaint;
   17     interface AxisOperation;
   18     interface AxisPositioningServo;
   19     interface AxisRates;
   20     interface AxisSensedState;
   21     interface AxisSetup;
   22     interface AxisVelocityServo;
   23
   24     typedef double AxisAccelCmd;
   25     typedef double AxisForceCmd;
   26     typedef double AxisPositionCmd;
   27     typedef double AxisVelocityCmd;
   28
   29     interface Axis : OmacModule
   30     {
   31       // Get Reference Objects
   32       // AxisAbsolutePos  getAbsolutePosition(); // removed 23-Jun-1997
   33       AxisAccelerationServo getAccelerationServo();
   34       AxisCommandedOutput getCommandOutput();
   35       AxisErrorAndEnable getErrorAndEnable();
   36       AxisForceServo  getForceServo();
   37       AxisHoming getHoming();
   38       AxisIncrementPos getIncrementPosition();
   39       AxisJogging getJogging();
   40       AxisPositioningServo getPositioningServo();
   41       AxisSensedState getSensedState();
   42       AxisVelocityServo getVelocityServo();
   43
   44       void setAccelerationServo(in AxisAccelerationServo val);
   45       void setCommandOutput(in AxisCommandedOutput val);
   46       void setErrorAndEnable(in AxisErrorAndEnable val);
   47       void setForceServo(in AxisForceServo val);
   48       void setHoming(in AxisHoming val);
   49       void setIncrementPosition(in AxisIncrementPos val);
   50       void setJogging(in AxisJogging val);
   51       void setPositioningServo(in AxisPositioningServo val);
   52       void setSensedState(in AxisSensedState val);
   53       void setVelocityServo(in AxisVelocityServo val);
   54
   55       long processServoLoop( ); // the primary function.
   56       long checkPreconditions( ); //  checked at every servo loop.
   57
   58       // State transition methods and state queries
   59
   60       void disableAxis();            // DISABLEEvent
   61       void enableAxis();             // ENABLEEvent
   62       // void estop();                  // EStopEvent - in Omac Module base class
   63       void followCommandPosition(); // FOLLOWPositionEvent
   64       void followCommandTorque();   // FOLLOWTorqueEvent
   65       void followCommandVelocity(); // FOLLOWVelocityEvent
   66       void followCommandForce();    // FOLLOWForceEvent
   67       void home(in double velocity);  // STARTHomeEvent
   68       void jog(in double velocity);   // STARTJogEvent
   69       void resetAxis();              // RESETEvent
   70       void stopMotion();             // CANCELEvent
   71       void updateAxis();             // UPDATEEvent
   72
   73       // Returns a ASCII readable string
   74       string currentStateName();
   75
   76       // Instead of:
   77       // int currentState();
   78       //  DISABLED                =  1,
   79       //  ENABLED                 =  2,
   80       //  EStopped               =  3,
   81       //  FOLLOWINGPosition      =  4,
   82       //  FOLLOWINGTorque        =  5,
   83       //  FOLLOWINGVelocity      =  6,
   84       //  HOMING                  =  7,
   85       //  JOGGING                 =  8,
   86       //  STOPPING                =  9;
   87



 THE OMAC API  SET WORKING DOCUMENT

  VERSION 0.18

 2/26/98 71

   88       // Use accessor functions so there is no confusion about numbering
   89       // Also inherit state queries from OMAC Base Module
   90       boolean isFollowingAcceleration();
   91       boolean isFollowingForce();
   92       boolean isFollowingPosition();
   93       boolean isFollowingVelocity();
   94       boolean isHoming();
   95       boolean isIncrementingPosition();
   96       boolean isJogging();
   97       boolean isMovingto();
   98     };
   99
  100    interface AxisAccelerationServo
  101    {
  102      // All invoked by Axis FSM
  103      boolean accelerationServoError();
  104      void accelerationErrorAction();
  105      void accelerationUpdateAction();
  106      void endAccelerationFollowingAction();
  107      void startAccelerationFollowingAction();
  108    };
  109
  110    interface AxisCommandedOutput
  111    {
  112      AxisPositionCmd getPositionCommand();
  113      AxisVelocityCmd getVelocityCommand();
  114      AxisAccelCmd getAccelerationCommand();
  115      AxisForceCmd getForceCommand();
  116
  117      void setPositionCommand(in AxisPositionCmd  positioningCmd );
  118      void setVelocityCommand(in AxisVelocityCmd  velocityCmd );
  119      void setAccelerationCommand(in AxisAccelCmd accelerationCmd );
  120      void setForceCommand(in AxisForceCmd   forceCmd );
  121
  122      void updateCommandedOutput();  // updates using connections to IO
  123
  124    };
  125
  126    interface AxisDyn
  127    {
  128      attribute Force staticFriction;
  129      attribute Force runFriction;
  130      attribute Time timeConstant;
  131      attribute Length backlash;
  132      attribute Length deadband;
  133      attribute Mass axmass;
  134
  135      attribute LinearAcceleration accelerationLimit;
  136      attribute LinearAcceleration decelerationLimit;
  137      attribute LinearJerk jerkLimit;
  138      attribute LinearAcceleration zeroVelAccLim;
  139      attribute LinearAcceleration maxVelAccLim;
  140
  141      attribute Length overshootStepInput;
  142      attribute Time risingTimeStepInput;
  143      attribute Force quasiStaticLoadLimit;
  144      attribute LinearStiffness loadedCaseSpringRate;
  145      attribute LinearStiffness worstCaseSpringRate;
  146      attribute Mass inertia;
  147      attribute Force damping;
  148
  149    };
  150
  151    interface AxisErrorAndEnable
  152    {
  153      void resetAxisAction();
  154      void disableAxisAction();
  155      void enableAxisAction();
  156      void eStopAxisAction();
  157    };
  158
  159    interface AxisForceServo
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  160    {
  161      // All invoked by Axis FSM
  162      boolean forceServoError();
  163      void forceErrorAction();
  164      void forceUpdateAction();
  165      void endForceFollowingAction();
  166      void startForceFollowingAction();
  167    };
  168
  169    interface AxisHoming
  170    {
  171      void startHomingAction(in double startVelocity ); // prepares homing
  172      void homingUpdateAction();           // called each servo cycle
  173      void stopHomingAction();             // stops homing before completion
  174      void homingCompleteAction();         // On transition from homing to Enabled
  175                                             // -- when homing is completed
  176      void eStopHomingAction();           // On transition from homing to E-stopped
  177      void disableHomingAction();          // On transition from homing to disabled
  178      boolean isDone();                     // signals when homing is completed
  179      boolean isStopping();
  180      boolean homingError();                // true if error has occurred during homing
  181    };
  182    interface AxisJogging
  183    {
  184      void startJoggingAction(in double targetVelocity );
  185      void joggingUpdateAction();
  186      void stopJoggingAction();
  187      boolean isDone();
  188      boolean isStopping();
  189      boolean joggingError();
  190      void eStopHomingAction();
  191      void disableHomingAction();
  192    };
  193    interface AxisKinematics
  194    //      Provision for lower kinematic model and upper kinematic
  195    //      model consistent with ISO STEP standard.
  196
  197    //      Include services for characterizing these errors :
  198
  199    //      Include provision for
  200    //      - geometric errors of motion
  201    //      - thermally induced errors
  202
  203    //      The posFeedBackGain and the velFeedBackGain are
  204    //      calculated using the connectivity of the jointCompts.
  205
  206    //      The basic synthesis model is the ISO standard for
  207    //      kinematic modeling, which is close to the D-H model
  208    //      which had  its genesis in robotics, primarily oriented
  209    //      toward a single robotic device.  Since manufacturing
  210    //      equipment could consist of multiple such devices working
  211    //      on a single workpiece or a set of workpieces, we extend
  212    //      the ISO kinematic model, to provide for the inclusion of
  213    //      kinematic models for fixtures, workpieces, and tooling.
  214    //      The D-H model is also extended to include kinematic
  215    //      errors of motion, the composed property of interest is
  216    //      the motion of the work-point as a result of motions of
  217    //      the Axis (or vice versa).  The kinematics model also
  218    //      supports the model of dynamics and states.
  219    {
  220      attribute double Ks;
  221      attribute double posFeedBackGain;
  222      attribute double velFeedBackGain;
  223      attribute UpperKinematicModel ukm;
  224      attribute LowerKinematicModel lkm;
  225      attribute CoordinateFrame placement;
  226    };
  227    interface AxisLimits
  228    //Limits to Motions Ranges
  229    {
  230      // Misc. parameters
  231      attribute LinearVelocity maxVelocity;
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  232      attribute LinearJerk JerkLimit;
  233      attribute Force maxForceLimit;
  234
  235      attribute Length usefulTravel;
  236      attribute Length cutOffPosition;
  237
  238      // Following Error levels: warning, limit, violation
  239      attribute Length warnLevelFollError;
  240      attribute Length followingErrorViolationLim;
  241      attribute Length followingErrorWarnLim;
  242      attribute Length followingErrorWarnAmt;
  243
  244      // Overshoot Error Levels: warning, limit, violation
  245      attribute Length overshootWarnLevelLimit;
  246      attribute Length overshootLimit;
  247      attribute Length overshootViolationLim;
  248      // Amount of overshoot
  249      attribute Length overshootWarnLevelAmt;
  250
  251      // Underreach Error Levels: warning, limit, violation
  252      attribute Length underreachWarnLevelLimit;
  253      attribute Length underreachLimit;
  254      attribute Length underreachViolationLim;
  255      // Amount of undershoot
  256      attribute Length underreachtWarnLevelAmt;
  257
  258      // OverTravel Limits
  259      attribute Length softFwdOTravelLim;
  260      attribute Length softRevOTravelLim;
  261      attribute Length hardFwdOTravelLim;
  262      attribute Length hardRevOTravelLim;
  263    };
  264
  265    interface AxisMaint
  266    //      Provision for data and operations that support
  267    //      maintenance, e.g. health-tests, health-monitoring.
  268    {
  269    //  attribute MaintHistory mh;
  270    };
  271    interface AxisPositioningServo
  272    {
  273      // All invoked by Axis FSM
  274      boolean positioningServoError();
  275      void positioningErrorAction();
  276      void positioningUpdateAction();
  277      void endPositioningFollowingAction();
  278      void startPositioningFollowingAction();
  279    };
  280    interface AxisRates
  281    {
  282      //Specifications of travel capabilities.
  283      //worst-case conditions.  But to take advantage of more
  284      //capability provide a model that describes conditions
  285      //when more capability is available and the corresponding
  286      //values or value-functions.
  287
  288      attribute Length maxTravel;
  289      attribute LinearVelocity maxVelocity;
  290      attribute LinearAcceleration maxAcceleration;
  291      attribute LinearJerk maxjerk;
  292      attribute Length posErrRatioIdleStationary;
  293      attribute Length posErrRatioIdleMoving;
  294      attribute Length posErrRatioCutStationary;
  295      attribute Length posErrRatioCutMoving;
  296      attribute long repeatability;
  297    };
  298    interface AxisSensedState
  299    {
  300
  301      //if(!hardFwdOTravel) && if(!softFwdOTravel) &&if(!hardRevOTravel) &&
  302      //   if(!softRevOTravel)
  303      //then enablingPrecondition = 1;
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  304      //else enablingPrecondition = 0;
  305      //   Concurrency: Sequential
  306      boolean getEnablingPrecondition();
  307      void setEnablingPrecondition();
  308
  309      attribute boolean inPosition;
  310      attribute boolean softFwdOTravel;
  311      attribute boolean hardFwdOTravel;
  312      attribute boolean softRevOTravel;
  313      attribute boolean hardRevOTravel;
  314      attribute boolean followingErrorWarn;
  315      attribute boolean followingErrorViolation;
  316      attribute boolean overShootViolation;
  317      attribute boolean enablingPrecondition;
  318    };
  319    interface AxisSetup
  320    //Services preparatory to automatic cyclic operation. Data that can be supplied
  321    // before arrival of current motion command.
  322    {
  323      // sets the reference to the axis rates for physical limits, software limits.
  324      attribute AxisRates physicalLimits;
  325      attribute AxisRates currentRates;
  326      attribute AxisDyn AxD;
  327    };
  328    interface AxisVelocityServo
  329    {
  330      // All invoked by Axis FSM
  331      boolean velocityServoError();
  332      void velocityErrorAction();
  333      void velocityUpdateAction();
  334      void endVelocityFollowingAction();
  335      void startVelocityFollowingAction();
  336    };

A.15 CONTROL LAW

    1      #include "DataRepresentation.idl"
    2
    3      interface ControlLaw
    4      {
    5        // Parameters
    6        void setCommanded(in double setpoint);
    7        double getCommanded();
    8
    9        void setCommandedDot(in double setpointdot);
   10       double getCommandedDot();
   11
   12       void setCommandedDotDot(in double setpointdotdot);
   13       double getCommandedDotDot();
   14
   15       void setOutput(in double value);
   16       double getOutput();
   17
   18       void setFeedback(in double actual);
   19       double getFeedback();
   20
   21       void setFollowingError(in double epsilon);
   22       double getFollowingError();
   23
   24       // Offsets
   25       void setFollowingErrorOffset(in double preoffset);
   26       double getFollowingErrorOffset();
   27
   28       void setOutputOffset(in double postoffset);
   29       double getOutputOffset();
   30
   31       void setFeedbackOffset(in double postoffset);
   32       double getFeedbackOffset();
   33
   34       void setTuneIn(in double value); // enable with breakLoop
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   35       double getTuneIn();
   36
   37
   38       // Operations
   39       Status calculateControlCmd(); // calculate next output
   40       Status init();   // clear time history
   41       void breakLoop();    // force tuning inputs
   42       void makeLoop();     // enable loop closure
   43     };
   44
   45     // PID Extension
   46     interface PIDTuning
   47     {
   48       // Attributes
   49       double getKp();
   50       double getKi();
   51       double getKd();
   52
   53       void setKp(in double val);
   54       void setKi(in double val);
   55       void setKd(in double val);
   56
   57        double getKcommanded();
   58        double getKcommandedDot();
   59        double getKcommandedDotDot();
   60        double getKfeedback();
   61
   62        void setKcommanded(in double val);
   63        void setKcommandedDot(in double val);
   64        void setKcommandedDotDot(in double val);
   65        void setKfeedback(in double val);
   66     };
   67
   68     // Example 1: Software Interfacce to PID Hardware Board
   69     // NULLControlAw has same api but does not cause any action
   70     //interface PIDHard: NULLControlLaw, PIDTuning;
   71     // Example 2: Software PID implementation
   72     //interface PIDSoft: CONTROLLaw, PIDTuning;

A.16 HUMAN MACHINE INTERFACE

    1
    2      interface HMI
    3      {
    4        // Presentation Methods
    5        void presentErrorView();
    6        void presentOperationalView();
    7        void presentSetupView();
    8        void presentMaintenanceView();
    9
   10       // Events - to alert HMI that something has happened
   11       void updateCurrentView();
   12     };
   13

A.17 PROCESS MODEL

    1      #include "DataRepresentation.idl"
    2      // Level 1
    3      interface ProcessModel
    4      {
    5        OacVector getUserCoordinateOffsets();
    6        void setUserCoordinateOffsets(in OacVector offsets);
    7
    8        OacVector getAxesCoordinateOffsets();               // used by axes group
    9        void setAxesCoordinateOffsets(in OacVector offsets);   // set by sensor process
   10
   11       Measure  getFeedrateOverrideValue();           // used by axisgroup
   12       void  setFeedrateOverrideValue(in Measure feed);  // used by hmi
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   13
   14       Measure  getSpindleOverrideValue();            // used by axisgroup
   15       void  setSpinldeOverrideValue(in Measure feed);   // used by hmi
   16     };
   17

A.18 KINEMATICS

    1      #ifndef _KINEMATICS_
    2      #define _KINEMATICS_
    3      #include "DataRepresentation.idl"
    4
    5      // Notes:
    6      // 23-Jun-1997 : Level 1 removed
    7
    8      interface KinStructure
    9      {
   10       CoordinateFrame getPlacementFrame();
   11       void setPlacementFrame(in CoordinateFrame value);
   12
   13       CoordinateFrame getBaseframe();
   14       void setBaseframe(in CoordinateFrame value);
   15     };
   16
   17     // FIXME: A template  would map into IDL sequence
   18     //typedef RWTPtrSlist<Connection> Connections;
   19     interface Connection ;
   20     typedef sequence<Connection> Connections;
   21
   22     interface Connection
   23     {
   24       KinStructure getFrom();
   25       void setFrom(in KinStructure value);
   26
   27       KinStructure getTo();
   28       void setTo(in KinStructure value);
   29
   30       CoordinateFrame getPlacement();
   31       void setPlacement(in CoordinateFrame value);
   32     };
   33
   34
   35     // Last update: 18-Jun-1997 Sushil Birla, Steve Sorensen
   36     interface KinMechanism ;
   37     typedef sequence<KinMechanism> KinMechanisms;
   38
   39     interface KinMechanism
   40     {
   41       void forwardKinematicTransform(in Connections cn);
   42       OacVector  inverseKinematicTransform(in CoordinateFrame cf);
   43
   44       Connections getConnections();
   45       void setConnections(in Connections value);
   46
   47       KinMechanisms getKinmechanisms();
   48       void setKinmechanisms(in KinMechanisms value);
   49     };
   50
   51     // FIXME: A template  would map into IDL sequence
   52     //typedef RWTPtrSlist<KinMechanism> KinMechanisms;
   53     // FIXME: add graph/tree traversal functions
   54
   55
   56     // Notes:
   57     // 1. For various specilizations of inverseKinematicTransform()
   58     // Specialize KinMechanism and extend as needed.
   59     #endif


